Skip to main content
Log in

Novel Constitutive Equation for Predicting Dynamic Recrystallization During Hot Working Considering the Efficiency of Power Dissipation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The efficiency of power dissipation (η) in a dynamic material model has been conventionally used for qualitative predictions to estimate the hot working conditions at which dynamic recrystallization (DRX) is dominant. However, predicting the quantitative value of the DRX fraction (XDRX) from η remains a challenge. In this paper, a constitutive equation is proposed to quantitatively predict XDRX using η. The proposed equation for describing XDRX is derived from the reaction rate equation using the assumption that the DRX rate depends on η. The proposed equation is verified via hot compression tests of equiaxed Ti–6Al–4V ELI alloys (Ti-64) in the (α + β) region. The predicted and experimental XDRX values are found to be generally consistent with one another, exhibiting an average absolute error of 0.05. Furthermore, the proposed equation provides the same level of prediction accuracy as the conventional Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation. Therefore, the proposed equation can be used to quantitatively predict XDRX following hot compression tests of equiaxed Ti-64. Moreover, compared with the JMAK equation, the proposed equation is expressed in fewer parameters and constant terms. It is, thus, expected to facilitate the quantitative prediction of XDRX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

T :

Temperature

\(\dot{\varepsilon }\) :

Strain rate

ε :

Strain

σ :

Stress

d DRX :

DRX grain size

D 1 :

Material constant

D 2 :

Material constant

Z :

Zener–Hollomon parameter

R :

Gas constant

Q :

Apparent activation energy for hot deformation

X DRX :

Fraction of dynamic recrystallization

β d :

Rate coefficient in the JMAK equation

k d :

Avrami exponent

ε c :

Critical strain at which DRX initiates

ε p :

Peak strain in σε curves

n 1 :

Material constant

n 2 :

Material constant

ε 0 .5 :

ε when XDRX = 0.5

n 3 :

Material constant

n 4 :

Material constant

n 5 :

Material constant

Q 1 :

Material constant

d 0 :

Initial grain size before deformation

η :

Efficiency of power dissipation

P :

Power dissipated during hot working

G :

Power dissipated for the temperature increase due to plastic deformation

J :

Power dissipated during microstructural evolution

m :

Strain rate sensitivity exponent

K :

Material constant

J max :

Maximum value of J

η′:

Modified efficiency of power dissipation

X Precipitation :

Fraction of precipitation

t :

Time

R 1 :

Radius of a particle

D :

Diffusion coefficient of the solute atoms

N :

Number of participating particles per unit volume

C :

Concentration of a chemical substance

k :

Rate coefficient

μ s :

Shear modulus

b :

Magnitude of the Burgers vector

ρ recrystallized :

Average dislocation density of recrystallized grains

ρ un -recrystallized :

Average dislocation density of un-recrystallized grains

ε com :

True compressive strain

ΔT :

Temperature variation due to the work performed on the sample

η e :

Fraction of the mechanical work that is transformed into heat

c p :

Heat capacity of the material

ρ :

Density of the sample

W :

Energy per unit volume that is input into the sample

A :

Constant

ε e ff :

Effective strain

\({\dot{\varepsilon }}_{\mathrm{eff}}\) :

Effective strain rate

θ :

Misorientation angle

c 1 :

Constant

c 2 :

Constant

X DRX_PRE :

XDRX predicted using constitutive equation

X DRX_EXP :

XDRX obtained via experimentation

AAE :

Average absolute error

i :

ith data obtained by varying the compression conditions and observation locations

I :

Total number of data points

μ :

Chemical potential

References

  1. J. Jeswiet, M. Geiger, U. Engel, M. Kleiner, M. Schikorra, J. Duflou, R. Neugebauer, P. Bariani, and S. Bruschi: CIRP JMST., 2008, vol. 1, pp. 2–17.

    Google Scholar 

  2. F. Chen, Z. Cui, and J. Chen: Manuf. Rev., 2014, vol. 1(6), pp. 1–21.

    CAS  Google Scholar 

  3. K. Huang and R.E. Loge: Mater. Des., 2016, vol. 111, pp. 548–74.

    Article  CAS  Google Scholar 

  4. C.M. Sellars: Mater. Sci. Technol., 1990, vol. 6, pp. 1072–81.

    Article  CAS  Google Scholar 

  5. C. Zener and J.H. Hollomon: J. Appl. Phys., 1994, vol. 15, pp. 22–32.

    Article  Google Scholar 

  6. C.M. Sellars and J.A. Whiteman: Met. Sci., 1979, vol. 13, pp. 187–94.

    Article  CAS  Google Scholar 

  7. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st ed. Pergamon Press, Oxford, 1995, pp. 188–95.

    Google Scholar 

  8. H. Matsumoto and V. Velay: J. Alloys Compd., 2017, vol. 708, pp. 404–13.

    Article  CAS  Google Scholar 

  9. A. Laasraoui and J.J. Jonas: Metall. Trans. A., 1991, vol. 22A, pp. 151–60.

    Article  CAS  Google Scholar 

  10. S.I. Kim, Y. Lee, D.L. Lee, and Y.C. Yoo: Mater. Sci. Eng. A, 2003, vol. 355, pp. 384–93.

    Article  Google Scholar 

  11. H.S. Jeong, J.R. Cho, and H.C. Park: J. Mater. Process. Technol., 2005, vol. 162–163, pp. 504–11.

    Article  Google Scholar 

  12. D. Xu, M. Zhu, Z. Tang, and C. Sun: J. Wuhan Univ. Technol. Mat. Sci., 2013, vol. 28, pp. 819–24.

    Article  Google Scholar 

  13. G.Z. Quan, G.C. Luo, J.T. Liang, D.S. Wu, A. Mao, and Q. Liu: Comput. Mater. Sci., 2015, vol. 97, pp. 136–47.

    Article  CAS  Google Scholar 

  14. G.Z. Quan, D.S. Wu, G.C. Luo, Y.F. Xia, J. Zhou, Q. Liu, and L. Gao: Mater. Sci. Eng. A., 2014, vol. 589, pp. 23–33.

    Article  CAS  Google Scholar 

  15. S.M. Abbasi, A. Momeni, Y.C. Lin, and H.R. Jafarian: Mater. Sci. Eng. A, 2016, vol. 665, pp. 154–60.

    Article  CAS  Google Scholar 

  16. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker: Metall. Trans. A, 1984, vol. 15A, pp. 1883–92.

    Article  CAS  Google Scholar 

  17. Y.V.R.K. Prasad and T. Seshacharyulu: Int. Mater. Rev., 1998, vol. 43, pp. 243–58.

    Article  CAS  Google Scholar 

  18. A. Lukaszek-Solek, J. Krawczyk, T. Sleboda, and J. Grelowski: J. Mater. Res. Technol., 2019, vol. 8, pp. 3281–90.

    Article  CAS  Google Scholar 

  19. S. Venugopal, M. Vasudevan, S. Venugopal, P.V. Sivaprasad, S.K. Jha, P. Pandey, S.L. Mannan, and Y.V.R.K. Prasad: Mater. Sci. Technol., 1996, vol. 12, pp. 955–62.

    Article  CAS  Google Scholar 

  20. F.L. Sui, L.X. Xu, L.Q. Chen, and X.H. Liu: J. Mater. Process. Technol., 2011, vol. 211, pp. 433–40.

    Article  CAS  Google Scholar 

  21. Y. Yamashita, Y. Li, H. Matsumoto, Y. Koizumi, and A. Chiba: Mater. Trans., 2011, vol. 52, pp. 780–86.

    Article  CAS  Google Scholar 

  22. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad: Mater. Sci. Eng. A, 2000, vol. 284, pp. 184–94.

    Article  Google Scholar 

  23. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad: Mater. Sci. Eng. A, 2002, vol. 325, pp. 112–25.

    Article  Google Scholar 

  24. Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, and W.G. Frazier: J. Mater. Process. Technol., 2001, vol. 108, pp. 320–27.

    Article  CAS  Google Scholar 

  25. N.K. Park, J.T. Yeom, and Y.S. Na: J. Mater. Process. Technol., 2002, vol. 130–131, pp. 540–45.

    Article  Google Scholar 

  26. J. Luo, P. Ye, M.Q. Li, and L.Y. Liu: Mater. Des., 2015, vol. 88, pp. 32–40.

    Article  CAS  Google Scholar 

  27. C. Wert and C. Zener: J. Appl. Phys., 1950, vol. 21, pp. 5–8.

    Article  CAS  Google Scholar 

  28. P. Atkins, J. de Paula, and J. Keeler: Atkins’ Physical chemistry, 11th ed. Oxford University Press, Oxford, 2018, pp. 731–33, 787–89.

    Google Scholar 

  29. Y.P. Li, E. Onodera, H. Matsumoto, Y. Koizumi, S. Yu, and A. Chiba: ISIJ Int., 2011, vol. 51, pp. 782–87.

    Article  CAS  Google Scholar 

  30. Y.P. Li, E. Onodera, H. Matsumoto, and A. Chiba: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 982–90.

    Article  CAS  Google Scholar 

  31. M.C. Mataya and V.E. Sackschewsky: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2737–52.

    Article  CAS  Google Scholar 

  32. Y.P. Li, H. Matsumoto, and A. Chiba: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1203–09.

    Article  CAS  Google Scholar 

  33. H. Matsumoto, L. Bin, S.H. Lee, Y. Li, Y. Ono, and A. Chiba: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3245–60.

    Article  Google Scholar 

  34. T. Furu, K. Marthinsen, and E. Nes: Mater. Sci. Technol., 1990, vol. 6, pp. 1093–1102.

    Article  CAS  Google Scholar 

  35. H. Rottenberg: Biophys. J., 1973, vol. 13, pp. 503–11.

    Article  CAS  Google Scholar 

  36. I. Weiss, F.H. Froes, D. Eylon, and G.E. Welsch: Metall. Trans. A, 1986, vol. 17A, pp. 1935–47.

    Article  CAS  Google Scholar 

  37. Q. Chao, P.D. Hodgson, and H. Beladi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2659–71.

    Article  Google Scholar 

  38. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685–99.

    Article  CAS  Google Scholar 

  39. L.S. Toth, Y. Estrin, R. Lapovok, and C. Gu: Acta Mater., 2010, vol. 58, pp. 1782–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sosuke Korenaga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenaga, S., Honda, M., Yamanaka, K. et al. Novel Constitutive Equation for Predicting Dynamic Recrystallization During Hot Working Considering the Efficiency of Power Dissipation. Metall Mater Trans A 53, 2163–2173 (2022). https://doi.org/10.1007/s11661-022-06658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06658-6

Navigation