Skip to main content
Log in

Effect of Density and Processing Conditions on Oxide Transformations and Mechanical Properties in Cr–Mo-Alloyed PM steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To improve the mechanical properties and performances of water-atomized powder metallurgy steels, it is necessary to enhance the density. Consolidating water-atomized steel powders via conventional pressing and sintering to a relative density level > 95 pct involves processing challenges. Consolidation of gas-atomized powders to full density by hot isostatic pressing (HIP) is an established process route but utilizing water-atomized powders in HIP involves challenges that result in the formation of prior particle boundaries due to higher oxygen content. In this study, the effect of density and processing conditions on the oxide transformations and mechanical properties from conventional press and sintering, and HIP are evaluated. Hence, water-atomized Cr–Mo-alloyed powder is used and consolidated into different density levels between 6.8 and 7.3 g cm−3 by conventional die pressing and sintering. Fully dense material produced through HIP is evaluated not only of mechanical properties but also for microstructural and fractographic analysis. An empirical model based on power law is fitted to the sintered material properties to estimate and predict the properties up to full density at different sintering conditions. A model describing the mechanism of oxide transformation during sintering and HIP is proposed. The challenges when it comes to the HIP of water-atomized powder are addressed and the requirements for successful HIP processing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.R. Dale: Int. J. Powder Metall., 2011, vol. 47, pp. 27–31.

    CAS  Google Scholar 

  2. V.T. Troshchenko: Sov. Powder Metall. Met. Ceram., 1963, vol. 2, pp. 179–85.

    Article  Google Scholar 

  3. A. Salak, V. Mishkovich, E. Dudrova, and E. Rudnayova: Powder Metall. Int., 1972, vol. 6, pp. 128–32.

    Google Scholar 

  4. R. Haynes: Met. Powder Rep., 1991, vol. 46, pp. 49–51.

    Article  Google Scholar 

  5. P. Beiss and M. Dalgic: Mater. Chem. Phys., 2001, vol. 67, pp. 37–42.

    Article  CAS  Google Scholar 

  6. N.A. Fleck and R.A. Smith: Powder Metall., 1981, vol. 24, pp. 121–5.

    Article  CAS  Google Scholar 

  7. H. Danninger, D. Spoljaric, and B. Weiss: Int. J. Powder Metall., 1997, vol. 33, pp. 43–53.

    CAS  Google Scholar 

  8. P. Beiss and M. Dalgic: Met. Powder Rep., 1997, vol. 51, p. 38.

    Article  Google Scholar 

  9. O. Bergman and A. Bergmark: Adv. Powder Metall. Part. Mater., 2003, pp. 7–270.

  10. N. Chawla, J.J. Williams, X. Deng, C. Mcclimon, L. Hunter, and S.H. Lau: Int. J. Powder Metall., 2009, vol. 45, pp. 19–27.

    CAS  Google Scholar 

  11. K.S. Narasimhan: Mater. Chem. Phys., 2001, vol. 67, pp. 56–65.

    Article  CAS  Google Scholar 

  12. R.M. German, N. Myers, T. Mueller, G. Sethi, and R.K. Enneti: in PowderMet 2004, 2004, pp. 76–88.

  13. M. Hull: Powder Metall., 1998, vol. 41, pp. 232–3.

    Google Scholar 

  14. W.B. James: in International Conference on Powder Metallurgy & Particlulate Materials PM2TEC, vol. 98, 1998, pp. 55–60.

  15. C. Lindberg, B. Johansson, and B. Maroli: Adv. Powder Metall. Part. Mater., 2000, vol. 3, pp. 6–81.

    Google Scholar 

  16. H. Danninger: Mater. Sci. Forum., 2003, vol. 426–432, pp. 115–22.

    Article  Google Scholar 

  17. J. Lewenhagen: Mater. Sci. Forum., 2003, vol. 416–418, pp. 241–6.

    Article  Google Scholar 

  18. T. Marcu, A. Molinari, G. Straffelini, and S. Berg: Powder Metall., 2005, vol. 48, pp. 139–43.

    Article  CAS  Google Scholar 

  19. Y. Yu: in Proceedings of Powder Metallurgy World Congress, vol. 2, Kyoto, 2000, pp. 911–14.

  20. H. Danninger, C. Gierl, S. Kremel, G. Leitner, K. Jaenicke-Roessler, and Y. Yu: Powder Metall. Prog., 2002, vol. 2, pp. 125–40.

    CAS  Google Scholar 

  21. S. Kremel, H. Danninger, and Y. Yu: Powder Metall. Prog., 2002, vol. 2, pp. 211–21.

    CAS  Google Scholar 

  22. P. Ortiz and F. Castro: Powder Metall., 2004, vol. 47, pp. 291–8.

    Article  CAS  Google Scholar 

  23. M. Campos, L. Blanco, and J.M. Torralba: J. Therm. Anal. Calorim., 2006, vol. 84, pp. 483–7.

    Article  CAS  Google Scholar 

  24. O. Bergman and S. Bengtsson: in Proceedings of Euro PM 2009, vol. 1, 2009.

  25. H. Karlsson, L. Nyborg, and S. Berg: Powder Metall., 2005, vol. 48, pp. 51–8.

    Article  CAS  Google Scholar 

  26. D. Chasoglou, E. Hryha, M. Norell, and L. Nyborg: Appl. Surf. Sci., 2013, vol. 268, pp. 496–506.

    Article  CAS  Google Scholar 

  27. E. Hryha, C. Gierl, L. Nyborg, H. Danninger, and E. Dudrova: Appl. Surf. Sci., 2010, vol. 256, pp. 3946–61.

    Article  CAS  Google Scholar 

  28. B. Lindqvist: in Proceedings of EuroPM 2001, Nice, 2001, pp. 13–21.

  29. M. Hrubovčáková, E. Dudrová, E. Hryha, M. Kabátová, and J. Harvanová: Adv. Mater. Sci. Eng., 2013, vol. 2013, art. no. 789373.

    Article  Google Scholar 

  30. O. Bergman, B. Lindqvist, and S. Bengtsson: Mater. Sci. Forum., 2007, vol. 534–536, pp. 545–8.

    Article  Google Scholar 

  31. S.J. Mashl: in Powder Metallurgy, Vol 7, ASM Handbook, P. Samal and J. Newkirk, eds., ASM International, 2015, pp. 260–70.

  32. E. Hryha, A. Weddeling, M. Walter, L. Nyborg, S. Huth, K. Zumsande, S. Weber, and W. Theisen: in Proceedings of 11-th International Conference on Hot Isostatic Pressing, Stockholm, 2014, pp. 180–93.

  33. A.J. Cooper, N.I. Cooper, J. Dhers, and A.H. Sherry: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 4467–75.

    Article  Google Scholar 

  34. A.J. Cooper, W.J. Brayshaw, and A.H. Sherry: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 1579–91.

    Article  Google Scholar 

  35. R. Shvab, E. Hryha, D. Chasoglou, O. Bergman, and L. Nyborg: in World PM 2016 Congress and Exhibition, 2016.

  36. A. Flodin, M. Andersson, and A. Miedzinski: Met. Powder Rep., 2017, vol. 72, pp. 107–10.

    Article  Google Scholar 

  37. M. Andersson, M. Bergendahl, U. Bjarre, A. Eklund, S. Gunnarsson, S. Haglund, H. Hansson, I. Heikkilä, A. Khodaee, A. Melander, H. Nyberg, L. Nyborg, A. Strondl, and M. Vattur Sundaram: Met. Powder Rep., 2019, vol. 74, pp. 199–203.

    Article  Google Scholar 

  38. M. Ahlfors: in Advances in Powder Metallurgy and Particulate Materials—2014, 2014.

  39. A. Eklund and M. Ahlfors: Met. Powder Rep., 2018, vol. 73, pp. 163–9.

    Article  Google Scholar 

  40. A. Weddeling, N. Wulbieter, and W. Theisen: Powder Metall., 2016, vol. 59, pp. 9–19.

    Article  CAS  Google Scholar 

  41. D. Chasoglou, E. Hryha, and L. Nyborg: Mater. Chem. Phys., 2013, vol. 138, pp. 405–15.

    Article  CAS  Google Scholar 

  42. E. Hryha and L. Nyborg: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 1736–47.

    Article  Google Scholar 

  43. M. Vattur Sundaram, E. Hryha, and L. Nyborg: Powder Metall. Prog., 2014, vol. 14, pp. 85–92.

    Google Scholar 

  44. P. Beiss: in Landolt-Börnstein—Group VIII Advanced Materials and Technologies, 2003, pp. 5–20.

  45. S. Hatami, A. Malakizadi, L. Nyborg, and D. Wallin: J. Mater. Process. Technol., 2010, vol. 210, pp. 1180–89.

    Article  CAS  Google Scholar 

  46. Höganäs Handbook for Sintered Components 1: Materials and Powder Properties, Höganäs AB, 2004.

  47. T. Marcu Puscas, M. Signorini, A. Molinari, and G. Straffelini: Mater. Charact., 2003, vol. 50, pp. 1–10.

    Article  CAS  Google Scholar 

  48. M. Dlapka, H. Danninger, C. Gierl, and B. Lindqvist: Met. Powder Rep., 2010, vol. 65, pp. 30–3.

    Article  Google Scholar 

  49. M. Vattur Sundaram, E. Hryha, M. Ahlfors, O. Bergman, S. Berg, and L. Nyborg: Powder Metall., 2021, pp. 1–8.

  50. O. Bergman and L. Nyborg: Powder Metall. Prog., 2010, vol. 10, pp. 1–19.

    CAS  Google Scholar 

  51. M. Vattur Sundaram, S. Karamchedu, C. Gouhier, E. Hryha, O. Bergman, and L. Nyborg: Met. Powder Rep., 2019, vol. 74, pp. 244–50.

    Article  Google Scholar 

  52. O. Bergman: Powder Metall., 2007, vol. 50, pp. 243–9.

    Article  CAS  Google Scholar 

  53. S. Banerjee and P.G. Mukunda: Powder Metall., 1984, vol. 27, pp. 89–92.

    Article  CAS  Google Scholar 

  54. E. Hryha, L. Nyborg, and L. Alzati: Powder Metall., 2015, vol. 58, pp. 7–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Martin Bram from Forschungszentrum Jülich GmbH in Germany for the support with the preparation of HIP capsules. The authors greatly acknowledge support from the Chalmers Area of Advance in Production and the strategic innovation program LIGHTer, supported by Vinnova.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maheswaran Vattur Sundaram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 16, 2021, accepted November 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vattur Sundaram, M., Hryha, E., Chasoglou, D. et al. Effect of Density and Processing Conditions on Oxide Transformations and Mechanical Properties in Cr–Mo-Alloyed PM steels. Metall Mater Trans A 53, 640–652 (2022). https://doi.org/10.1007/s11661-021-06539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06539-4

Navigation