Skip to main content
Log in

Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects

  • Symposium: International Workshop on Materials Design Process: Thermodynamics, Kinetics, and Microstructure Control
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The main obstacle for utilization of Cr and Mn as alloying elements in powder metallurgy is their high oxygen affinity leading to oxidation risk during powder manufacturing, handling, and especially during further consolidation. Despite the high purity of the commercially available Cr- and Mn-prealloyed iron powder grades, the risk of stable oxide formation during the sintering process remains. Thermodynamic and kinetic simulation of the oxide formation/transformation on the former powder surface during heating and sintering stages using thermodynamic modeling tools (Thermo-Calc and HSC Chemistry) was performed. Simulation is based on the results from the analysis of amount, morphology, and composition of the oxide phases inside the inter-particle necks in the specimens from interrupted sintering trials utilizing advanced analysis tools (HRSEM + EDX and XPS). The effect of the processing parameters, such as sintering atmosphere composition, temperature profile as well as graphite addition on the possible scenarios of oxide reduction/formation/transformation for Fe-Cr-Mn-C powder systems, was evaluated. Results indicate that oxide transformation occurs in accordance with the thermodynamic stability of oxides as follows: Fe2O3 → FeO → Fe2MnO4 → Cr2FeO4 → Cr2O3 → MnCr2O4 → MnO/MnSiO x  → SiO2. Spinel MnCr2O4 was identified as the most stable oxide phase at applied sintering conditions up to 1393 K (1120 °C). Controlled conditions during the heating stage minimize the formation of stable oxide products and produce oxide-free sintered parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. Hryha, E. Dudrova and S. Bengtsson, Powder Metall., 2008, vol. 51, pp. 340-42.

    Article  Google Scholar 

  2. Höganäs AB, Iron and Steel Powders for Sintered Components. 1st ed., Höganäs AB, Höganäs, Sweden, 2002.

    Google Scholar 

  3. D. Chasoglou, E. Hryha, M. Norell, L. Nyborg (2013) Appl. Surf. Sci., 268, pp. 496–506.

    Article  Google Scholar 

  4. E. Hryha, C. Gierl, L. Nyborg, H. Danninger, E. Dudrova (2010) Appl. Surf. Sci., 256, pp. 3946-61.

    Article  Google Scholar 

  5. H. Karlsson, L. Nyborg and S. Berg, Powder Metall., 2005, vol. 48, pp. 51-58.

    Article  Google Scholar 

  6. E. Hryha and L. Nyborg: Proceedings of World PM2010, vol. 2, EPMA, Florence, 2010, pp. 268–75.

  7. O. Bergman, L. Nyborg, Powder Metall. Prog., 2010, vol. 10, pp.1-19.

    Google Scholar 

  8. E. Hryha, L. Nyborg, Powder Metall. Prog., 2011, vol. 11, pp. 42-50.

    Google Scholar 

  9. D. Chasoglou, E. Hryha and L. Nyborg: Mater. Chem. Phys., 2013, vol. 138, pp. 405–15.

  10. E. Hryha and L. Nyborg: Proceedings of World PM2012, JPMA, Yokohama, 2013, 16A-T9-12 (CD-ROM).

  11. D. Chasoglou, E. Hryha, and L. Nyborg: Powder Metall. Prog., 2011, vol. 11, pp. 32–41.

  12. S. Kremel, H. Danninger and Y. Yu, Powder Metall. Prog., 2002, vol. 2, pp. 211-21.

    Google Scholar 

  13. O. Bergman, Powder Metall., 2007, vol. 50, pp. 243-49.

    Article  Google Scholar 

  14. H. Danninger, C. Xu, and B. Lindqvist: Prog. Powder Metall., 2007, pp. 577–80.

  15. H. Danninger and C. Gierl: Mater. Chem. Phys., 2001, vol. 67, pp. 49–55.

  16. H. Danninger, C. Gierl, S. Kremel, G. Leitner, K. Jaenicke-Roessler, Y. Yu, Powder Metall. Prog., 2002, vol. 2, pp. 125-39.

    Google Scholar 

  17. P. Ortiz and F. Castro, Powder Metall., 2004, 47, pp. 291-98.

    Article  Google Scholar 

  18. S. Karamchedu, E. Hryha and L. Nyborg, Powder Metall. Prog., 2011, vol. 11, pp. 90-96.

    Google Scholar 

  19. E. Hryha, E. Dudrova, and L. Nyborg: J. Mater. Process. Technol., 2012, vol. 212, pp. 977–87.

  20. E. Hryha, L. Nyborg, A. Malas, S. Wiberg, S. Berg, Powder Metall., 2013, vol. 56, pp. 5-10.

    Article  Google Scholar 

  21. D.L. Douglass, F. Gesmundo, and C. Asmundis, Oxid. Met., 1986, vol. 25, pp. 235–68.

  22. I.H. Jung, Solid State Ionics, 2006, vol. 177, pp. 765-77.

    Article  Google Scholar 

  23. L. Kjellqvist and M. Selleby, J. Alloys Compd., 2010, vol. 507, pp. 84-92.

    Article  Google Scholar 

  24. O. Bergman: PhD Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2011.

Download references

Acknowledgments

The authors would like to thank VINNOVA (Swedish Agency for Innovation Systems) and Höganäs AB for financial support. Further thanks is also extended to Höganäs AB for scientific cooperation and permission to publish this research. Dr Ola Bergman, Höganäs AB, is greatly acknowledged for the fruitful discussions during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Hryha.

Additional information

Manuscript submitted June 17, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hryha, E., Nyborg, L. Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects. Metall Mater Trans A 45, 1736–1747 (2014). https://doi.org/10.1007/s11661-013-1969-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1969-3

Keywords

Navigation