Skip to main content
Log in

Eutectic Nucleation in 7xxx Series Aluminum Alloys from a Non-classical Viewpoint

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The early stages of eutectic solidification in a copper-containing 7xxx series aluminum alloy (AA 7068 or AMS 4331) were studied using the two-thermocouple computer-aided thermal analysis (CATA) technique. A feature was detected on the cooling rate curve at the equilibrium solidus temperature of the alloy which persists until the peak of the subsequent final eutectic solidification. Detailed analysis of the temperature difference between the wall and the center of the thermal analysis sample, together with examination of the eutectic solidified on the walls of porosities and a study of the eutectic nucleation on the basis of the non-classical theory of adsorption heterogeneous nucleation, indicated how the feature can be related to the faceting of the atomic structure of the solid/liquid (S/L) interface. The solidification of the remnant liquid after the faceting transition at the equilibrium solidus point depends on the interfacial undercooling and proceeds via either primary phase re-nucleation or secondary phase nucleation by adsorption. The eutectic solidification is affected by the presence of the primary phase which acts like an adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

S/L:

Solid/Liquid interface

θ :

Wetting angle

f(θ):

Nucleant classical catalytic efficiency

CNT:

Classic nucleation theory

C L :

Liquid composition

C α :

Primary phase composition

C O :

Alloy composition

P :

Solidification range extension

Q :

Equilibrium solidification range

α ac. :

Acicular primary αAl phase

T L :

Liquidus temperature

T PE :

Stoppage temperature

T E :

Eutectic temperature

T S :

Solidus temperature

DCP:

Dendritic coherency point

ECP:

Eutectic coherency point

T W :

Temperature at wall

T C :

Temperature at center

ESD:

Emergent screw dislocation

References

  1. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, 2nd edn., Butterworths, London, 1976.

    Google Scholar 

  2. N.A. Belov, D.G. Eskin, A.A. Aksenov (2005) Multicomponent Phase Diagrams. Elsevier, New York

    Google Scholar 

  3. ASM International (2018) Aluminum Science and Technology. ASM International, Cleveland, pp. 462–77

    Google Scholar 

  4. R. Ghiaasiaan, X. Zeng, and S. Shankar: Mater. Sci. Eng. A, 2014, vol. 594, pp. 260–77.

    CAS  Google Scholar 

  5. R. Ghiaasiaan, B.S. Amirkhiz, and S. Shankar: Mater. Sci. Eng. A, 2017, vol. 698, pp. 206–17.

    CAS  Google Scholar 

  6. S. Lin: PhD thesis, UNIVERSITÉ DU QUÉBEC À CfflCOUTIM MÉMOIRE, 1999.

  7. D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1511–9.

    Google Scholar 

  8. M. Rappaz, A. Jacot, W.J. Boettinger (2003) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 34A:467–79

    CAS  Google Scholar 

  9. M. Rappaz: Curr. Opin. Solid State Mater. Sci., 2015, vol. 20, pp. 37–45.

    Google Scholar 

  10. D. Warrington and D.G. Mccartney: Cast Met., 1990, vol. 3, pp. 202–8.

    Google Scholar 

  11. T. Koutsoukis and M.M. Makhlouf: Int. J. Cast Met. Res., 2017, vol. 30, pp. 231–43.

    CAS  Google Scholar 

  12. M. Pourgharibshahi, M. Divandari, H. SaghafianLarijani, P. Ashtari (2017) J. Mater. Process. Technol. 250:203–19

    CAS  Google Scholar 

  13. C.-C. Wang and C.S. Smith: JOM, 1950, vol. 2, pp. 136–8.

    Google Scholar 

  14. L. Bäckerud, E. Krol, J. Tamminen (1986) Solidification Characteristics of Aluminum Alloys, Wrought Alloys, Vol. 1. Skanaluminium, Oslo

    Google Scholar 

  15. L. Bäckerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys. Vol. 2. Foundry Alloys, AFS/ SKAN ALUMINUM, New York, 1990.

    Google Scholar 

  16. M.A. Lamplough and B.A. Scott: Proc. R. Soc. Lond. A, 1914, vol. 90, pp. 600–4.

    CAS  Google Scholar 

  17. J.H. Hollomon and D. Turnbull: J. Met., 1951, pp. 803–05.

  18. B.E. Sundquist and L.F. Mondolfo: Trans. Met. Soc. AIME, 1961, vol. 221, p. 607.

    CAS  Google Scholar 

  19. B.E. Sundquist, R. Bruscato, and L.F. Mondolfo: J. Inst. Met., 1963, vol. 91, p. 204.

    CAS  Google Scholar 

  20. M. Gigliotti, G.A. Colligan, and G.L.F. Powell: Metall. Trans., 1970, vol. 1, pp. 891–7.

    CAS  Google Scholar 

  21. G.L.F. Powell and G.A. Colligan: Metall. Trans., 1971, vol. 2, pp. 849–52.

    CAS  Google Scholar 

  22. G.L.F. Powell and G.A. Colligan: Metall. Trans., 1970, vol. 1, pp. 1349–51.

    CAS  Google Scholar 

  23. G.L.F. Powell and G.A. Colligan: Metall. Trans., 1970, vol. 1, pp. 133–38.

    CAS  Google Scholar 

  24. C. Lemaignan, M.C. Cheynet, and N. Eustathopoulos: J. Cryst. Growth, 1980, vol. 50, pp. 720–8.

    CAS  Google Scholar 

  25. L.M. Hogan: J. Aust. Inst. Met., 1965, vol. 10, pp. 78–88.

    CAS  Google Scholar 

  26. M. Hillert and H. Steinhauser: Jemont Ann, 1960, vol. 144, pp. 520–59.

    CAS  Google Scholar 

  27. C. Lemaignan: Acta Metall., 1981, vol. 29, pp. 1379–84.

    CAS  Google Scholar 

  28. S. Akamatsu, S. Moulinet, and G. Faivre: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2039–48.

    Google Scholar 

  29. L.F. Mondolfo, B. Vonnegut, H. Chessin (1972) Science, 176:695

    CAS  Google Scholar 

  30. A. Kofler: J. Austral. Inst. Met., 1965, vol. 10, p. 132.

    CAS  Google Scholar 

  31. M. Heni and H. Löwen: Phys. Rev. Lett., 2000, vol. 85, pp. 3668–71.

    CAS  Google Scholar 

  32. H. Men, Z. Fan (2018) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49:2766–77.

    CAS  Google Scholar 

  33. O. Dolynchuk, M. Tariq, and T. Thurn-Albrecht: J. Phys. Chem. Lett., 2019, vol. 10, pp. 1942–6.

    CAS  Google Scholar 

  34. W.T. Kim and B. Cantor: Acta Metall., 1994, vol. 42, pp. 3115–27.

    CAS  Google Scholar 

  35. B. Cantor (2003) Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 361:409–17

    CAS  Google Scholar 

  36. S. Ma, A.J. Brown, R. Yan, R.L. Davidchack, P.B. Howes, C. Nicklin, Q. Zhai, T. Jing, and H. Dong: Commun. Chem., 2019, vol. 2, pp. 1–12.

    Google Scholar 

  37. G.A. Chadwick: Acta Metall., 1962, vol. 10, pp. 1–12.

    CAS  Google Scholar 

  38. M.F. Chell and H.W. Kerr: Metall. Trans., 1972, vol. 3, pp. 2002–4.

    CAS  Google Scholar 

  39. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd edn., CRC Press, Aedermannsdorf, 1998.

    Google Scholar 

  40. S.T. Bluni, M.R. Notis, and A.R. Marder: Acta Metall. Mater., 1995, vol. 43, pp. 1775–82.

    CAS  Google Scholar 

  41. M. Pourgharibshahi, H. Saghafian, M. Divandari, and G. Timelli: Metall. Mater. Trans. A, 2019, vol. 50, pp. 326–35.

    CAS  Google Scholar 

  42. B. Cini, E. Vinet, and P.J. Desre: Philos. Mag. A, 2000, vol. 80, pp. 955–66.

    CAS  Google Scholar 

  43. P.J. Desré, E. Cini, and B. Vinet: J. Non. Cryst. Solids, 2001, vol. 288, pp. 210–7.

    Google Scholar 

  44. G. Chai (1994) Dendrite Coherency during Equiaxed Solidification in Aluminium Alloys. Stockholm University, Stockholm.

    Google Scholar 

  45. S. Farahany, A. Ourdjini, T.A.A. Bakar, and M.H. Idris: Met. Mater. Int., 2014, vol. 20, pp. 929–38.

    CAS  Google Scholar 

  46. C. González-Rivera, H. CruzM, A. GarcíaH., J.A. Juarez-Islas (1999) J. Mater. Eng. Perform. 8:103–10

    Google Scholar 

  47. Y. Xu, D. Casari, Q. Du, R.H. Mathiesen, L. Arnberg, and Y. Li: Acta Mater., 2017, vol. 140, pp. 224–39.

    CAS  Google Scholar 

  48. D.H. StJohn, A. Prasad, M.A. Easton, and M. Qian: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4868–85.

    CAS  Google Scholar 

  49. J.F. Wallace: Jom, 1963, vol. 15, pp. 372–6.

    CAS  Google Scholar 

  50. L.A. Tarshis, J.L. Walker, and J.W. Rutter: Metall. Trans., 1971, vol. 2, pp. 2589–97.

    CAS  Google Scholar 

  51. I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229–37.

    CAS  Google Scholar 

  52. D. Shu, B. Sun, J. Mi, and P.S. Grant: Acta Mater., 2011, vol. 59, pp. 2135–44.

    CAS  Google Scholar 

  53. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907–21.

    CAS  Google Scholar 

  54. Z. Fan, F. Gao, L. Zhou, and S.Z. Lu: Acta Mater., 2018, vol. 152, pp. 248–57.

    CAS  Google Scholar 

  55. I. Sunagawa: Crystals: Growth, Morphology, and Perfection, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  56. W.K. Burton and N. Cabrera: Discuss. Faraday Soc., 1949, vol. 5, p. 33.

    Google Scholar 

  57. F.C. Frank: Adv. Phys., 1952, vol. 1, pp. 91–109.

    Google Scholar 

  58. W.K. Burton, N. Cabrera, and F.C. Frank: Nature, 1949, vol. 163, pp. 398–9.

    CAS  Google Scholar 

  59. F.C. Frank (1949) Discuss. Faraday Soc. 5:48–54

    Google Scholar 

  60. J.A. Dantzig, M. Rappaz (2009) Solidification, 1st edn, EPFL Press, Lausanne

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Alberto Fabrizi for assistance with the FESEM studies and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Divandari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 3, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourgharibshahi, M., Divandari, M., Saghafian, H. et al. Eutectic Nucleation in 7xxx Series Aluminum Alloys from a Non-classical Viewpoint. Metall Mater Trans A 51, 4572–4583 (2020). https://doi.org/10.1007/s11661-020-05876-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05876-0

Navigation