Skip to main content
Log in

Peculiarities of Phase Transitions and Structure Formation in a Ternary Al-Cu-Ni Alloy with Four-Phase Peritectic Reaction

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The structure formation in peritectic Al-4.5at.%Cu-11at.%Ni ternary alloy with four-phase peritectic reaction was investigated using the quantitative phase-field model of eutectic growth. This model, extended to an arbitrary number of phases, guarantees the stability requirements on individual interfaces. The thermal noise terms disturb the stability and produce the heterogeneous nucleation of secondary phases in accordance to the energetic and concentration conditions. In our recent work it was shown that in differential thermal analysis (DTA) experiments specific microstructure parts in Al-4.5at.%Cu-11at.%Ni alloy with a four-phase peritectic reaction were observed, which cannot be explained by Scheil calculation or simple phase-field modeling. In this work, it was found by numerical experiments that, due to the formation of anisotropic quasi-primary Al3Ni2 crystals and the suppression of the nucleation of (Al) phase, the eutectic-like coupled growth of Al3Ni2 and Al3Ni phases can be observed. In addition, at further cooling the anisotropic shape of quasi-secondary Al3Ni crystals promotes the nucleation of the (Al) phase. The simulated final structure is comparable to the experimental one which is characterized by large Al3Ni2 crystals enveloped by the Al3Ni phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.M. Liu, Y.Q. Su, X.Zh. Li, L.S. Luo, J.J. Guo, and H.Zh. Fu, J. Cryst. Growth 312, 3658 (2010).

    Article  Google Scholar 

  2. A. Bogno, H. Nguyen-Thi, A. Buffet, G. Reinhart, B. Billia, N. Mangelinck-Noel, N. Bergeon, J. Baruchel, and T. Schenk, Acta Mater. 59, 4356 (2011).

    Article  Google Scholar 

  3. D.M. Liu, X.Zh. Li, Y.G. Su, P. Peng, L.Sh. Luo, J.J. Guo, and H.Zh. Fu, Acta Mater. 60, 2679 (2012).

    Article  Google Scholar 

  4. J.H. Lee and J.D. Verhoeven, J. Cryst. Growth 144, 353 (1994).

    Article  Google Scholar 

  5. K. Nagashio, Y. Takamura, and K. Kuribagashi, Scr. Mater. 41, 1161 (1999).

    Article  Google Scholar 

  6. M. Vandyoussefi, H.W. Kerr, and W. Kurz, Acta Mater. 48, 2297 (2000).

    Article  Google Scholar 

  7. R. Trivedi, J.T. Mason, and W. Kurz, Acta Metall. Mater. 39, 469 (1991).

    Article  Google Scholar 

  8. W. Kurz and R. Trivedi, Metall. Trans. A 22, 3051 (1991).

    Article  Google Scholar 

  9. Y.C. Liu, G.C. Yang, X.F. Guo, J. Huang, and Y.H. Zhou, J. Cryst. Growth 222, 645 (2001).

    Article  Google Scholar 

  10. L.Sh. Luo, Y.Q. Su, J.J. Guo, X.Zh. Li, and H.Zh. Fu, Sci. China 50, 442 (2007).

    MATH  Google Scholar 

  11. T.S. Lo, A. Karma, and M. Plapp, Phys. Rev. E 63, 031504 (2001).

    Article  Google Scholar 

  12. T.S. Lo, S. Dobler, M. Plapp, A. Karma, and W. Kurz, Acta Metall. 51, 599 (2003).

    Google Scholar 

  13. J. Kundin and R. Siquieri, Physica D 240, 459 (2011).

    Article  MATH  Google Scholar 

  14. J. Kundin, R. Siquieri, and H. Emmerich, Physica D 243, 116 (2013).

    Article  MATH  Google Scholar 

  15. J. Kundin, H.-L. Chen, H. Emmerich, and R. Schmid-Fetzer, Eur. Phys. J. Plus 126, 96 (2011).

    Article  Google Scholar 

  16. J. Kundin, H. Emmerich, P. Wang, and R. Schmid-Fetzer, Eur. Phys. J. 223, 567 (2014).

    Google Scholar 

  17. E. Pogorelov, J. Kundin, and H. Emmerich: Condens. Mater. Sci. arXiv:1304.6549 (2013).

  18. R. Folch and M. Plapp, Phys. Rev. E 72, 011602 (2005).

    Article  MathSciNet  Google Scholar 

  19. N. Moelans, Acta Mater. 59, 1077 (2011).

    Article  Google Scholar 

  20. E.A. Brener, C. Hiiter, D. Pilipenko, and D.E. Temkin, Phys. Rev. Lett. 99, 105701 (2007).

    Article  Google Scholar 

  21. E.A. Brener, G. Boussinot, C. Hiiter, M. Fleck, D. Pilipenko, R. Spatschek, and D.E. Temkin, J. Phys. Condens. Matter 21, 464106 (2009).

    Article  Google Scholar 

  22. K. Bouche, F. Barbier, and A. Coulet, Z. Metallkd. 88, 446 (1997).

    Google Scholar 

  23. A. Ilbagi, P. Delshad Khatibi, I.P. Swainson, G. Reinhart, and H. Henein: Can. Metall. Q. 50, 295 (2011).

  24. J. Kundin, D. Raabe, and H. Emmerich, J. Mech. Phys. Solids 59, 2082 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Karma and W.J. Rappel, Phys. Rev. E 57, 4323 (1998).

    Article  MATH  Google Scholar 

  26. C. Huiter, G. Boussinot, E.A. Brener, and R. Spatschek, Phys. Rev. E 86, 021603 (2012).

    Article  Google Scholar 

  27. G. Boussinot, C. Huiter, and E.A. Brener, Phys. Rev. E 83, 020601 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the German Research Foundation (DFG) in the Priority Program SPP 1296 under Grants EM 68/17 and Schm 588/31. We wish to thank Juliane Böhm for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kundin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundin, J., Emmerich, H., Wang, P. et al. Peculiarities of Phase Transitions and Structure Formation in a Ternary Al-Cu-Ni Alloy with Four-Phase Peritectic Reaction. JOM 66, 1502–1511 (2014). https://doi.org/10.1007/s11837-014-1052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1052-6

Keywords

Navigation