Skip to main content
Log in

Evolution of Phase Constitution, Morphology and Corrosion Behavior of ZnCo Coating Containing Graphene Oxide

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The morphology, phase constitution and corrosion behavior of a pristine ZnCo coating (obtained from an acidic bath) and ZnCo composite coatings containing different amounts of graphene oxide were studied. To achieve this, electrochemical impedance spectroscopy, potentiodynamic polarization studies, scanning electron microscopy, X-ray diffraction, atomic force microscopy, contact angle measurement and weight loss measurements were conducted. It was observed that the morphology, phase constitution and corrosion resistance of the coatings were highly sensitive to the amount of graphene oxide contained in the coatings. For lower graphene oxide amounts, a compact and smooth morphology was observed, whereas higher graphene oxide content produced a non-uniform morphology with cracks on the coating surface essentially due to the deposition of agglomerated graphene oxide in the coating matrix. All the coatings contained a mixture of Zn phase and Zn10.63Co2.34 intermetallic phase. The volume fraction of the nobler intermetallic phase increased with an increase in the graphene oxide amount. The corrosion rate of the coatings decreased with the initial addition of graphene oxide to reach a minimum after which it increased with continued addition of graphene oxide. The initial reduction in the corrosion rate was attributed to the enhancement in the coating compactness and smoothness with the addition of graphene oxide, impermeability of the graphene oxide and enhancement of the relative volume fraction of the intermetallic phase. The enhancement of the corrosion rate after the optimum, which gave the lowest corrosion rate, was due to the increase in the morphologic roughness, cracks and surface defects in the coatings primarily due to non-uniform deposition of agglomerated graphene oxide in the coating matrix. Surface defects did not allow the formation of a continuous passive protection layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. D.A. Jones and B.E. Wilde: Corrosion, 1977, vol. 33, pp. 46-50.

    Article  CAS  Google Scholar 

  2. D. Zhang, L. Li, Y. Wu, B. Zhu and H. Song: Appl Surf Sci, 2019, vol. 473, pp. 493-99.

    Article  CAS  Google Scholar 

  3. S. Thomas, N. Birbilis, M. S. Venkatraman and I. S. Cole: Corros. Eng. Sci. Technol, 2012, vol. 68, pp. 15009.

    Google Scholar 

  4. G. D. Wilcox, D. R. Gabe: Corros Sci, 1993, vol. 35, pp. 1251-58.

    Article  CAS  Google Scholar 

  5. D. Weng, P. Jokiel, A. Uebleis, H Boehni: Surf Coat Tech, 1997, vol. 88, pp. 147-56.

    Article  CAS  Google Scholar 

  6. C. N. Panagopoulos, D. A. Lagaris and P. C. Vatista: Mater Chem Phys, 2011, vol. 126, pp. 398-403.

    Article  CAS  Google Scholar 

  7. J. Winiarski, W. Tylus, K. Winiarska and B. Szczygieł: Corros Sci, 2015, vol. 91, pp.330-40.

    Article  CAS  Google Scholar 

  8. N. Boshkov, K. Petrov, D. Kovacheva, S. Vitkova, S. Nemska: Electrochim Acta, 2005, vol. 51, pp. 77-84.

    Article  CAS  Google Scholar 

  9. K. Higashi, H. Fukushima, T. Urakawa, T. Adaniya, K. Matsudo: J Electrochem Soc, 1981, vol. 128, pp. 2081-85.

    Article  CAS  Google Scholar 

  10. D. Koleva, N. Boshkov, G. Raichevski, L. Veleva: Transactions of the IMF, 2005, vol. 83, pp. 188-93.

    Article  CAS  Google Scholar 

  11. F. Rosalbino, G. Scavino, D. Macciò and A. Saccone: Corros Sci, 2014, vol. 89, pp.286-294.

    Article  CAS  Google Scholar 

  12. R. Ramanauskas, P. Quintana, L. Maldonado, P. Pomés, M. A. Pech-Canul: Surf Coat Tech, 1997, vol. 92, pp. 16-21.

    Article  CAS  Google Scholar 

  13. D. Lima-Neto, A. N. Correia, R. P. Colares, W. S. Araujo: J Braz Chem Soc, 2007, vol. 18, pp. 1164-75.

    Article  Google Scholar 

  14. M. H. Gharahcheshmeh, M. H. Sohi: Mater Chem Phys, 2009, vol. 117, pp. 414-21.

    Article  CAS  Google Scholar 

  15. M. H. Gharahcheshmeh, M. H. Sohi: Mater Chem Phys, 2012, vol. 134, pp. 1146-52.

    Article  Google Scholar 

  16. T. Rabizadeh, S. R. Allahkaram: Mater Des, 2011, vol. 32, pp. 133-38.

    Article  CAS  Google Scholar 

  17. M. Abbasi, A. Abdollahzadeh, B. Bagheri, H. Omidvar: J Mater Eng Perform, 2015 vol. 24, pp. 5037-45.

    Article  CAS  Google Scholar 

  18. J.H. Lee, S. K. Hwang: J Nucl Mater, 2003, vol. 321, pp. 238-48.

    Article  CAS  Google Scholar 

  19. Y. Song, E. H. Han, D. Shan, C. D. Yim, B. S. You: Corros Sci, 2012, vol. 60, pp. 238-45.

    Article  CAS  Google Scholar 

  20. I. N. Sivagami, K. Prasanna, P. Santhoshkumar, Y. N. Jo, G. Y. Seo, C. W. Lee: J Alloys Compd, 2017, vol. 697, pp. 450-60.

    Article  CAS  Google Scholar 

  21. L. B. Tong, Q. X. Zhang, Z. H. Jiang, J. B. Zhang, J. Meng, L. R. Cheng, and H. J. Zhang: J mech behav biomed, 2016, vol. 62, pp. 57-70.

    Article  CAS  Google Scholar 

  22. P. C. Tulio & I. A. Carlos: J Appl Electrochem, 2009, vol. 39, pp. 1305-11.

    Article  CAS  Google Scholar 

  23. N. Boshkov, N. Tsvetkova, P. Petrov, D. Koleva, K. Petrov, G. Avdeev, C. Tsvetanov, G. Raichevsky, R. Raicheff: Appl Surf Sci, 2008, vol. 254, pp. 5618-25.

    Article  CAS  Google Scholar 

  24. B. P. Singh, B. K. Jena, S. Bhattacharjee, L. Besra L: Surf Coat Tech, 2013, vol. 232, pp. 475-81.

    Article  CAS  Google Scholar 

  25. J. H. Huh, S. H. Kim, J. H. Chu, S. Y. Kim, J. H. Kim, S.Y. Kwon: Nanoscale, 2014, vol. 6, pp. 4379-86.

    Article  CAS  Google Scholar 

  26. M. K. Kumar, M. P. Singh, C. Srivastava: RSC Advances, 2015, vol. 32, pp. 25603-08.

    Article  Google Scholar 

  27. M. Y. Rekha, C. Srivastava: Corros Sci, 2019, vol. 152, pp. 234-48.

    Article  Google Scholar 

  28. K. S. Jyotheender and C. Srivastava: Compos B Eng, 2019, vol. 175, p. 107145.

    Article  CAS  Google Scholar 

  29. S. Arora, N. Kumari and C. Srivastava: J. Alloys Compd., 2019, vol. 801, pp. 449-59.

    Article  CAS  Google Scholar 

  30. A. Gupta, C. Srivastava: Surf Coat Tech, 2019, vol. 375, pp. 573-88.

    Article  CAS  Google Scholar 

  31. S. Arora, C. Srivastava: Thin Solid Films, 2019 vol. 677, pp. 45-54.

    Article  CAS  Google Scholar 

  32. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff: Adv Mater, 2010, vol. 22, pp. 3906-24.

    Article  CAS  Google Scholar 

  33. L. Shahriary, A. A. Athawale: Int. J Renew Energy Environ Eng, 2014, vol. 2, pp. 58-63.

    Google Scholar 

  34. M. E. Bahrololoom, D. R. Gabe, G. D. Wilcox: J Electrochem Soc, 2013, vol. 150, pp. 144-51.

    Article  Google Scholar 

  35. Y. Gao, X. Ren, J. Wu, T. Hayat, A. Alsaedi, C. Cheng, C. Chen: Environ Sci Nano, 2018, vol. 5, pp. 362-71.

    Article  CAS  Google Scholar 

  36. K. M. Behbahani, P. Najafisayar, M. Pakshir: Corros Eng Sci Techn, 2019, vol. 54, pp. 174-183.

    Article  Google Scholar 

  37. S. Lichušina, A. Chodosovskaja, A. Sudavičius, R. Juškėnas, D. Bučinskienėe, A. Selskis, E. Juzeliūnas: Chemija, 2008, vol. 19, pp. 25-31.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research funding received from the SERB Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 8, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Srivastava, C. Evolution of Phase Constitution, Morphology and Corrosion Behavior of ZnCo Coating Containing Graphene Oxide. Metall Mater Trans A 51, 4274–4287 (2020). https://doi.org/10.1007/s11661-020-05812-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05812-2

Navigation