Skip to main content
Log in

Local Deformation and Fracture Behavior of High-Strength Aluminum Alloys Under Hydrogen Influence

  • Topical Collection: 3D Materials Science
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The local deformation and fracture behavior of high-Zn Al-Zn-Mg(-Cu) alloys under hydrogen influence were investigated by in situ tests through synchrotron X-ray tomography. Intergranular and quasi-cleavage fractures were induced by hydrogen, and strain localization by the presence of cracks was not observed by 3D strain mapping. These results suggest that the strain localization at the crack tip is smaller than the measurement limit of 3D strain mapping. The average crack-tip-opening displacements, which are one of the crack driving forces specified by fracture mechanics, directly measured from the tomographic slice were 0.14 and 0.23 μm for intergranular cracks and quasi-cleavage cracks, respectively. The crack driving forces of the intergranular and quasi-cleavage cracks were small. The local deformation behavior at the crack tips was analyzed based on fracture mechanics. The local deformation field of the crack tip, which was characterized using the Rice–Drugan–Sham (RDS) solution rather than the Hutchinson–Rice–Rosengren (HRR) solution, was located within 20 μm of the crack tip, and its size was limited. The results of this work clarify that the intergranular and quasi-cleavage crack growths are caused by small driving forces; however, this behavior is not perfectly brittle, accompanying local deformation at the crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens: Acta Mater., 2004, vol. 52, pp. 4727–43.

    CAS  Google Scholar 

  2. M.S. Bhuiyan, H. Toda, Z. Peng, S. Hang, K. Horikawa, K. Uesugi, A. Takeuchi, N. Sakaguchi, and Y. Watanabe: Mater. Sci. Eng. A, 2016, vol. 655, pp. 221–8.

    CAS  Google Scholar 

  3. M. Hirano, K. Kobayashi, and H. Tonda: J. Soc. Mater. Sci. Japan, 2000, vol. 49, pp. 86–91.

    CAS  Google Scholar 

  4. R. Braun: Materwiss. Werksttech., 2007, vol. 38, pp. 674–89.

    CAS  Google Scholar 

  5. D. Najjar, T. Magnin, and T.J. Warner: Influence of Critical Surface Defects and Localized Competition between Anodic Dissolution and Hydrogen Effects during Stress Corrosion Cracking of a 7050 Aluminium Alloy, vol. 238, 1997.

  6. S. Osaki and S. Haruyama: J. Jpn. Inst. Light Met., 2013, vol. 63, pp. 57–64.

    CAS  Google Scholar 

  7. S. Osaki, J. Ikeda, K. Kinoshita, Y. Sasaki, and A.M. Si: J. Jpn. Inst. Light Met., 2006, vol. 56, pp. 721–7.

    CAS  Google Scholar 

  8. S. Kuramoto, J. Okahana, and M. Kanno: Mater. Trans., 2001, 42, vol. 42.

    CAS  Google Scholar 

  9. M.S. Bhuiyan, Y. Tada, H. Toda, S. Hang, K. Uesugi, A. Takeuchi, N. Sakaguchi, and Y. Watanabe: Int. J. Fract., 2016, vol. 200, pp. 13–29.

    CAS  Google Scholar 

  10. M. Wang, E. Akiyama, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. 398, pp. 37–46.

    Google Scholar 

  11. K. Takai and R. Watanuki: ISIJ Int., 2003, vol. 43, pp. 520–6.

    CAS  Google Scholar 

  12. H. Su, H. Toda, R. Masunaga, K. Shimizu, H. Gao, K. Sasaki, M.S. Bhuiyan, K. Uesugi, A. Takeuchi, and Y. Watanabe: Acta Mater., 2018, vol. 159, pp. 332–43.

    CAS  Google Scholar 

  13. R.A. Oriani: Acta Metall., 1970, vol. 18, pp. 147–57.

    CAS  Google Scholar 

  14. H. Toda, T. Hidaka, M. Kobayashi, K. Uesugi, A. Takeuchi, and K. Horikawa: Acta Mater., 2009, vol. 57, pp. 2277–90.

    CAS  Google Scholar 

  15. M. Felberbaum and M. Rappaz: Acta Mater., 2011, vol. 59, pp. 6849–60.

    CAS  Google Scholar 

  16. P.D. Lee and J.D. Hunt: Acta Mater., 2001, vol. 49, pp. 1383–98.

    CAS  Google Scholar 

  17. H. Toda, H. Oogo, K. Horikawa, K. Uesugi, A. Takeuchi, Y. Suzuki, M. Nakazawa, Y. Aoki, and M. Kobayashi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 765–76.

    Google Scholar 

  18. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13, pp. 135–40.

    CAS  Google Scholar 

  19. P. Chao and R.A. Karnesky: Mater. Sci. Eng. A, 2016, vol. 658, pp. 422–8.

    CAS  Google Scholar 

  20. S.W. Smith and J.R. Scully: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 179–93.

    CAS  Google Scholar 

  21. T. Enomoto, R. Matsumoto, S. Taketomi, and N. Miyazaki: Zair. Soc. Mater. Sci. Japan, 2010, vol. 59, pp. 596–603.

    CAS  Google Scholar 

  22. K. Horikawa and K. Yoshida: Mater. Trans., 2004, vol. 45, pp. 315–8.

    CAS  Google Scholar 

  23. K. Horikawa, H. Okada, H. Kobayashi, and W. Urushihara: Mater. Trans., 2009, vol. 50, pp. 759–64.

    CAS  Google Scholar 

  24. H. Matsunaga, T. Usuda, K. Yanase, and M. Endo: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1315–26.

    Google Scholar 

  25. T. Izumi and G. Itoh: Mater. Sci. Forum, 2007, vol. 539–543, pp. 475–80.

    Google Scholar 

  26. K. Ichitani, M. Kanno, and S. Kuramoto: ISIJ Int., 2003, vol. 43, pp. 496–504.

    CAS  Google Scholar 

  27. I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2323–41.

    Google Scholar 

  28. M. Yamaguchi, K.I. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo, and H. Kaburaki: in Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 42, Springer US, 2011, pp. 330–9.

    Google Scholar 

  29. M. Yamaguchi, J. Kameda, K.-I. Ebihara, M. Itakura, and H. Kaburaki: Philos. Mag., 2012, vol. 92, pp. 1349–68.

    CAS  Google Scholar 

  30. Y. Mine, T. Tsumagari, and Z. Horita: Scr. Mater., 2010, vol. 63, pp. 552–5.

    CAS  Google Scholar 

  31. M. Nagumo: Mater. Sci. Technol., 2004, vol. 20, pp. 940–50.

    CAS  Google Scholar 

  32. T. Neeraj, R. Srinivasan, and J. Li: Acta Mater., 2012, vol. 60, pp. 5160–71.

    CAS  Google Scholar 

  33. M.L. Martin, J. A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson: Acta Mater., 2011, vol. 59, pp. 1601–06.

    CAS  Google Scholar 

  34. H. Toda, K. Shimizu, K. Uesugi, Y. Suzuki, and M. Kobayashi: Mater. Trans., 2010, vol. 51, pp. 2045–8.

    CAS  Google Scholar 

  35. M. Kobayashi, H. Toda, Y. Kawai, T. Ohgaki, K. Uesugi, D.S. Wilkinson, T. Kobayashi, Y. Aoki, and M. Nakazawa: Acta Mater., 2008, vol. 56, pp. 2167–81.

    CAS  Google Scholar 

  36. H. Su, T. Yoshimura, H. Toda, M.S. Bhuiyan, K. Uesugi, A. Takeuchi, N. Sakaguchi, and Y. Watanabe: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 6077–89.

    Google Scholar 

  37. T. Ishikawa and R.B. McLellan: Acta Metall., 1986, vol. 34, pp. 1091–5.

    CAS  Google Scholar 

  38. Japan Institute of Light Metals, ed.: Structures and Properties of Aluminum, Tokyo, 1991.

  39. J.R. Scully, G.A. Young, and S.W. Smith: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, its Characterisation and Effects on Particular Alloy Classes, Woodhead Publishing, 2012, pp. 707–68.

  40. M. Yamaguchi, T. Tsuru, K. Ebihara, and M. Itakura: J. Jpn. Inst. Light Met., 2018, vol. 68, pp. 588–95.

    CAS  Google Scholar 

  41. A. Takeuchi, K. Uesugi, Y. Suzuki, S. Itabashi, and M. Oda: J. Synchrotron Rad, 2017, vol. 24, pp. 586–94.

    Google Scholar 

  42. A. Takeuchi, K. Uesugi, and Y. Suzuki: J. Phys. Conf. Ser., 2017, vol. 849, p. 012055.

    Google Scholar 

  43. H. Toda, S. Yamamoto, M. Kobayashi, K. Uesugi, and H. Zhang: Acta Mater., 2008, vol. 56, pp. 6027–39.

    CAS  Google Scholar 

  44. W.E. Lorensen, H.E. Cline, W.E. Lorensen, and H.E. Cline: in Proceedings of the 14th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’87, vol. 21, ACM Press, New York, New York, USA, 1987, pp. 163–9.

  45. M. Yamaguchi, K.-I. Ebihara, M. Itakura, T. Tsuru, K. Matsuda, and H. Toda: Comput. Mater. Sci., 2019, vol. 156, pp. 368–75.

    CAS  Google Scholar 

  46. H. Toda, P.C.C. Qu, S. Ito, K. Shimizu, K. Uesugi, A. Takeuchi, Y. Suzuki, and M. Kobayashi: Int. J. Cast Met. Res., 2014, vol. 27, pp. 369–77.

    CAS  Google Scholar 

  47. P.N. Anyalebechi: Cast Met., 2016, vol. 3, pp. 182–201.

    Google Scholar 

  48. M.S.I.T. MSIT®: in Light Metal Systems. Part 3, Springer-Verlag, Berlin/Heidelberg, pp. 1–21.

  49. T. Izumi and G. Itoh: Mater. Trans., 2011, vol. 52, pp. 130–4.

    CAS  Google Scholar 

  50. G.A. Young and J.R. Scully: Acta Mater., 1998, vol. 46, pp. 6337–49.

    CAS  Google Scholar 

  51. H. Toda, Z.A.B. Shamsudin, K. Shimizu, K. Uesugi, A. Takeuchi, Y. Suzuki, M. Nakazawa, Y. Aoki, and M. Kobayashi: Acta Mater., 2013, vol. 61, pp. 2403–13.

    CAS  Google Scholar 

  52. Y.S. Chen, D. Haley, S.S.A. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot, and M.P. Moody: Science, 2017, vol. 355, pp. 1196–9.

    CAS  Google Scholar 

  53. J. Takahashi, K. Kawakami, and Y. Kobayashi: Acta Mater., 2018, vol. 153, pp. 193–204.

    CAS  Google Scholar 

  54. H. Saitoh, Y. Iijima, and K. Hirano: J. Mater. Sci., 1994, vol. 29, pp. 5739–44.

    CAS  Google Scholar 

  55. F.G. Wei, T. Hara, and K. Tsuzaki: Metall. Mater. Trans. B, 2004, vol. 35, pp. 587–97.

    CAS  Google Scholar 

  56. D. Nguyen, A.W. Thompson, and I.M. Bernstein: Acta Metall., 1987, vol. 35, pp. 2417–25.

    CAS  Google Scholar 

  57. H. Gao, H. Su, K. Shimizu, C. Kadokawa, H. Toda, Y. Terada, K. Uesugi, and A. Takeuchi: Mater. Trans., 2018, vol. 59, pp. 1532–5.

    CAS  Google Scholar 

  58. T. Tsuru, M. Yamaguchi, H. Toda, and K. Shimizu: unpublished work.

  59. P. Sofronis and R.M. McMeeking: J. Mech. Phys. Solids, 1989, vol. 37, pp. 317–50.

    Google Scholar 

  60. K. Hirayama, Y. Sek, T. Suzuki, H. Toda, K. Uesugi, A. Takeuchi, and W. Ludwig: in preparation.

  61. H. Toda, E. Maire, S. Yamauchi, H. Tsuruta, T. Hiramatsu, and M. Kobayashi: Acta Mater., 2011, vol. 59, pp. 1995–2008.

    CAS  Google Scholar 

  62. J.R. RICE, W.J. DRUGAN, and T.L. SHAM: Astm Stp 700, 1980, pp. 189–221.

    Google Scholar 

  63. K.S. Chan: Metall. Trans. A, 1990, vol. 21, pp. 81–6.

    CAS  Google Scholar 

  64. K.S. Chan: Acta Metall., 1989, vol. 37, pp. 1217–26.

    CAS  Google Scholar 

  65. T. Ogura, T. Otani, A. Hirose, and T. Sato: Mater. Sci. Eng. A, 2013, vol. 580, pp. 288–93.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Japan Science and Technology Agency (JST) under Collaborative Research Based on Industrial Demand “Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials.” This research was supported in part by a grant from the Light Metal Educational Foundation, Japan. The synchrotron radiation experiments were performed at the BL20XU and the BL37XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2016A1199, 2016B1081, 2016A0076, 2016B0076). The authors also thank Dr. Takahiro Shikama in KOBELCO and the Japan Aluminium Association for providing and preparing the materials used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Shimizu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 28, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, K., Toda, H., Uesugi, K. et al. Local Deformation and Fracture Behavior of High-Strength Aluminum Alloys Under Hydrogen Influence. Metall Mater Trans A 51, 1–19 (2020). https://doi.org/10.1007/s11661-019-05304-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05304-y

Navigation