Skip to main content

Advertisement

Log in

Mechanically Blended Al: Simple but Effective Approach to Improving Mechanical Property and Thermal Stability of Selective Laser-Melted Inconel 718

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Inconel718 (IN718) superalloy is one of the most widely employed high-temperature materials. How to improve its working temperature limit is a challenging but rewarding task. In this study, we have proved that by simply mechanical blending pre-alloyed IN718 powder with elemental Al powder, one can successfully add extra Al to the IN718 alloy. The Al-added IN718 alloys developed by this study show homogenous distribution of Al in the as-printed microstructure produced by selective laser melting (SLM), and only a slight loss of the Al amount is detected due to SLM in situ alloying. Excellent relative density of > 99.5 pct has been achieved, and after the standard heat treatment, the IN718 + 0.5Al alloy shows good mechanical properties, achieving a fracture strength of ~ 1400 MPa and elongation of ~ 12 pct. Introducing an extra amount of Al into the IN718 alloy has also improved thermal stability, in which testing is conducted at 680 °C and held for 100 hours. Meanwhile, it is noted that by a new heat treatment approach, the Al-doped IN718 alloy achieves the best fracture strength at ~ 1600 MPa and elongation at ~ 10 pct. The implications of the study have been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. 1. E. A. Loria: JOM, 1988, vol. 40, pp. 36-41.

    Article  Google Scholar 

  2. 2. R. F. Decker: JOM, 2006, vol. 58, pp. 32–36.

    Article  Google Scholar 

  3. 3. C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II. Wiley-Interscience, New York, 1987, pp. 97-131.

    Google Scholar 

  4. 4. R.C. Reed: The Superalloys: Fundamentals and Applications. Cambridge University Press, New York, 2008, pp. 33-99.

    Google Scholar 

  5. 5. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Metall. Trans. A, 1988, vol. 19, pp. 453-65.

    Article  Google Scholar 

  6. J.P. Collier, A.O. Selius, and J.K. Tien: Superalloys,1988, pp. 43–52.

  7. 7. R. Martin and D. Evans: JOM, 2000, vol. 52, pp. 24-8.

    Article  Google Scholar 

  8. 8. R. Cozar and A. Pineau: Metall. Trans., 1973, vol. 4, pp. 47-59.

    Article  Google Scholar 

  9. 9. J.P. Collier, H.W. Song, J.K. Tien, and J.C. Phillips: Metall. Trans. A, 1988, vol. 19, pp. 1657–66.

    Article  Google Scholar 

  10. 10. S.H. Fu, J.X. Dong, M.C. Zhang, and X.S. Xie: Mater. Sci. Eng. A, 2009, vol. 499, pp. 215-20.

    Article  Google Scholar 

  11. W. D. Cao and R. Kennedy: Superalloys, 2004, 2004, pp. 91-99.

    Article  Google Scholar 

  12. 12. I. Gibson, D.W. Rosen, and B. Stucker: Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing. Springer, New York, 2010, pp. 32–55.

    Google Scholar 

  13. 13. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing: Appl. Phys. Rev., 2015, vol. 2, pp. 41-101.

    Article  Google Scholar 

  14. 14. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina: Acta Mater., 2012, vol. 60, pp. 2229-39.

    Article  Google Scholar 

  15. 15. Q. Jia and D. Gu: J. Alloy Comp., 2014, vol. 585, pp. 713-21.

    Article  Google Scholar 

  16. X. Wang, R.M. Ward, M.H. Jacobs, and M.D. Barratt: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2981-89.

    Article  Google Scholar 

  17. 17. I. Gibson, D. Rosen, and B. Stucker: Additive Manufacturing Technologies.Springer, New York, 2010, pp 32–55.

    Book  Google Scholar 

  18. 18. B. Zhang, N.E. Fenineche, H. Liao, and C. Coddet: J. Magn. Mater., 2013, vol. 336, pp. 49-54.

    Article  Google Scholar 

  19. 19. B. Zhang, N.E. Fenineche, H. Liao, and C. Coddet: J. Mater. Sci. Technol., 2013, vol. 29, pp. 757-60.

    Article  Google Scholar 

  20. 20. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers: J. Mater. Process. Technol., 2004, vol. 149, pp. 616-22.

    Article  Google Scholar 

  21. 21. Q. Jia and D. Gu: J. Mater. Res., 2014, vol. 29, pp. 1960-9.

    Article  Google Scholar 

  22. 22. X. Yao, S.K. Moon, B.Y. Lee and G. Bi: Int. J. Precision Eng. Manufact., 2017, vol. 18, pp. 1693-1701.

    Article  Google Scholar 

  23. 23. T. Trosch, J. Strößner, R. Völkl, and U. Glatzel: Mater. Lett., 2016, vol. 164, pp. 428-31.

    Article  Google Scholar 

  24. 24. M. Xia, D. Gu, G. Yu, D. Dai, H. Chen, and Q. Shi: Int. J. Mach. Tool Manufact., 2017, vol. 116, pp. 96-106.

    Article  Google Scholar 

  25. M. J. Sohrabi, H. Mirzadeh, and M. Rafiei: Vacuum, 2018, vol. 154, pp. 235-43.

    Article  Google Scholar 

  26. 26. Y. Zhang, Z. Li, P. Nie, and Y. Wu: Metall. Mater. Trans. A, 2013, vol. 44, pp. 708-16.

    Article  Google Scholar 

  27. 27. M.D. Sangid, T.A. Book, D. Naragani, J. Rotella, P. Ravi, A. Finch, P. Kenesei, J.S. Park, H. Sharma, J. Almer, and X. Xiao, Add. Manufact., 2018, vol. 22, pp. 479-96.

    Article  Google Scholar 

  28. 28. W.M. Tucho, P. Cuvillier, A.S. Kverneland, and V. Hansen: Mater. Sci. Eng. A, 2017, vol. 689, pp. 220-32.

    Article  Google Scholar 

  29. 29. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater., 2016, vol. 108, pp. 36-45.

    Article  Google Scholar 

  30. 30. E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski: Mater. Sci. Eng. A, 2015, vol. 639, pp. 647-55.

    Article  Google Scholar 

  31. 31. S. Raghavan, B. Zhang, P. Wang, C.N. Sun, M.L. Sharon, T. Li, and J. Wei: Mater. Manufact. Process., 2017, vol. 32, pp. 1588-95.

    Article  Google Scholar 

  32. 32. W.M. Tucho, P. Cuvillier, A.S. Kverneland, and V. Hansen: Mater. Sci. Eng. A, 2017, vol. 689, pp. 220-32.

    Article  Google Scholar 

  33. 33. G.H. Cao, T.Y. Sun, C.H. Wang, X. Li, M. Liu, Z.X. Zhang, P.F. Hu, A.M. Russell, R. Schneider, D. Gerthsen, Z.J. Zhou, C.P. Li, and G.F. Chen: Mater. Character., 2018, vol. 136, pp. 398-406.

    Article  Google Scholar 

  34. 34. Y. H. Zhou, Z. H. Zhang, Y. P. Wang, G. Liu, S. Y. Zhou, Y. L. Li, J. Shen, and M. Yan: Add. Manufact., 2019, vol. 25, pp. 204-17.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Shenzhen Science and Technology Innovation Commission [ZDSYS201703031748354 and JCYJ20170817110358927] and the National Science Foundation of Guangdong Province [2016A030313756]. Dr M. Yan appreciates the support of the Humboldt Research Fellowship for Experienced Researchers. This work was also supported by the Pico Center at SUSTech with support from the Presidential fund and Development and Reform Commission of Shenzhen Municipality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 8, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z.H., Zhou, Y.H., Zhou, S.Y. et al. Mechanically Blended Al: Simple but Effective Approach to Improving Mechanical Property and Thermal Stability of Selective Laser-Melted Inconel 718. Metall Mater Trans A 50, 3922–3936 (2019). https://doi.org/10.1007/s11661-019-05299-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05299-6

Navigation