Skip to main content

Advertisement

Log in

Superior Strength with Enhanced Fracture Resistance of Al-Mg-Sc Alloy Through Two-Step Cryo Cross Rolling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of microstructure and the preferred orientation during the two-step cross rolling at room (RT) and cryogenic temperatures (CTs) on Al-Mg-Sc alloy were investigated and compared with the unidirectional rolled Al-Mg-Sc alloy in this study. In addition, the effects of two-step cross rolling on tensile, forming and void coalescence behavior were analyzed. After the solution heat treatment, the two-step cross rolling was executed with an initial 25 pct reduction in the unidirectional path and the final 25 pct reduction in the transverse direction. The two-step cross-rolled (TSCR) Al-Mg-Sc alloy at CT showed a higher fraction of sub-micron grains. The TSCR Al-Mg-Sc alloy exhibited brass and copper and a strong S texture. The texture indices and in-plane anisotropy values indicated the highly anisotropic nature of the TSCR Al-Mg-Sc alloy. During tensile deformation, the TSCR Al-Mg-Sc alloy at CT exhibited a strength value of 423 MPa, whereas the TSCR Al-Mg-Sc alloy at RT revealed only 378 MPa. The TSCR Al-Mg-Sc alloy at CT exhibited inferior formability compared with the TSCR Al-Mg-Sc alloy at RT and the solution heat-treated base alloy. The formability of the TSCR Al-Mg-Sc alloy was evaluated through the combined forming and fracture limit diagram (CFFLD). The presence of higher Goss-oriented grains enhanced the fracture resistance of the TSCR Al-Mg-Sc alloy at CT. Furthermore, consistency was found between the evaluated void coalescence parameters and the CFFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] I.J.Polmear: Light Alloys, 4th ed., Butterworth-Heinemann, Oxford, 2006, pp. 205-35

    Google Scholar 

  2. The Strong Light Weight Aerospace Aluminium AA5028 AlMgSc, Aleris Corporation, USA, 2015, https://www.aleris.com/wp-content/uploads/2016/02/AL-2342_012-Aktualisierung-BR-AlMgSc-2015-06-03-WEB.pdf, accessed 20 Nov 2018.

  3. [3] K.L. Kendig and D.B. Miracle: Acta Mater., 2002, vol. 50, pp. 4165–75.

    Article  Google Scholar 

  4. [4] T. Dorin, M. Ramajayam, A. Vahid, T. Langan: Aluminium Scandium Alloys, in: Roger N. Lumley (Ed.), Fundamentals of Aluminium Metallurgy Recent Advances, Woodhead Publishing Series in Metals and Surface Engineering, UK, 2018, pp. 439-494.

    Chapter  Google Scholar 

  5. [5] Y.A. Filatov, V.I. Yelagin and V. V Zakharov: Mater. Sci. Eng. A, 2000, vol. 280, pp. 97–101.

    Article  Google Scholar 

  6. [6] Z. Yin, Q. Pan, Y. Zhang and F. Jiang: Mater. Sci. Eng. A, 2000, vol. 280, pp. 151–55.

    Article  Google Scholar 

  7. [7] W. Yang, D. Yan and L. Rong: Scr. Mater., 2013, vol. 68, pp. 587–90.

    Article  Google Scholar 

  8. [8] R. Roumina and C.W. Sinclair: Acta Mater., 2010, vol. 58, pp. 111–21.

    Article  Google Scholar 

  9. [9] Y.W. Riddle and T.H. Sanders: Metall. Mater. Trans. A, 2004, vol. 35, pp. 341-50.

    Article  Google Scholar 

  10. [10] V. Ocenasek and M. Slamova: Mater. Charct., 2001, vol. 47, pp. 157–62.

    Article  Google Scholar 

  11. O.Roder, T. Wirtz, A. Gysler and G. Liitjering: Mater. Sci. Eng. A, 1997, vol. 234-236, pp. 181–84.

    Article  Google Scholar 

  12. [12] A. Vinogradov, A. Washikita, K. Kitagawa and V.I. Kopylov: Mater. Sci. Eng. A, 2003, vol. 349, pp. 318–26.

    Article  Google Scholar 

  13. [13] M. Li, Q. Pan, Y. Wang and Y. Shi: Mater. Sci. Eng. A, 2014, vol. 598, pp. 350–354.

    Article  Google Scholar 

  14. [14] D. Zhemchuzhnikova, A. Mogucheva and R. Kaibyshev: Mater. Sci. Eng. A, 2013, vol. 565, pp. 132–41.

    Article  Google Scholar 

  15. [15] D. Zhemchuzhnikova, S. Malopheyev, S. Mironov and R. Kaibyshev: Mater. Sci. Eng. A, 2014, vol. 598, pp. 387–95.

    Article  Google Scholar 

  16. [16] S.K. Panigrahi, D. Devanand and R. Jayaganthan: Trans. Indian Inst. Met., 2008, vol. 61, pp. 159–63.

    Article  Google Scholar 

  17. [17] B. Wang, X. Chen, F. Pan, J. Mao and Y. Fang: Trans. Nonferrous Met. Soc. China., 2015, vol. 25, pp. 2481–89.

    Article  Google Scholar 

  18. [18] D. Singh, P.N. Rao and R. Jayaganthan: Mater. Sci. Technol., 2014, vol. 30, pp. 1835–42.

    Article  Google Scholar 

  19. [19] R.J. Immanuel and S.K. Panigrahi: Mater. Sci. Eng. A, 2015, vol. 640, pp. 424-35.

    Article  Google Scholar 

  20. [20] P. Das, R. Jayaganthan, T. Chowdhury and I. V Singh: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7124-32.

    Article  Google Scholar 

  21. P.L.M. Kanta, V.C. Srivastava, K. Venkateswarlu, S. Paswan, B. Mahato,G.Das, K.Sivaprasad and K.Gopala Krishna: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 1293-05.

    Article  Google Scholar 

  22. K.S.V.B.R. Krishna, S. Vigneshwaran, K.Chandra Sekhar, S.S.R. Akella, K. Sivaprasad, R. Narayanasamy and K. Venkateswarlu: Int. J. Adv. Manuf. Technol., 2017, vol. 93, pp. 253–59.

    Article  Google Scholar 

  23. [23] R. Jayaganthan, H.G. Brokmeier, B. Schwebke and S.K. Panigrahi: J. Alloys Compd., 2010, vol. 496, pp. 183–88.

    Article  Google Scholar 

  24. [24] Y. Wang, M. Chen, F. Zhou and E. Ma: Nature, 2002, vol. 419,pp. 912–15.

    Article  Google Scholar 

  25. J. Zheng, C. Li, S. He, B. Ma andY. Song: Mater. Sci. Technol., 2017, vol. 33, 1681-87.

    Article  Google Scholar 

  26. G.S. D’yakonov, S. V Zherebtsov, M. V Klimova and G.A. Salishchev: Phys. Met. Metallogr., 2015, vol. 116, pp. 182–88.

    Article  Google Scholar 

  27. [27] Y.D. Shi, D.F. Guo, M. Li, Z.B. Zhang, T.Y. Ma and X.Y. Zhang: Mater. Sci. Technol., 2013, vol. 29, pp. 921–924.

    Article  Google Scholar 

  28. [28] S. Vigneshwaran, K. Sivaprasad, R. Narayanasamy and K. Venkateswarlu: Mater. Sci. Eng. A, 2019, vol. 740–741, pp. 49–62.

    Article  Google Scholar 

  29. [29] S. Vigneshwaran, K. Sivaprasad, R. Narayanasamy and K. Venkateswarlu: Mater. Sci. Eng. A, 2018, vol. 72, pp. 14–21.

    Article  Google Scholar 

  30. [30] T. Konkova, S. Mironov, A. Korznikov, G. Korznikova, M.M. Myshlyaev and S.L. Semiatin: Mater. Des., 2015, vol. 86, pp. 913–21.

    Article  Google Scholar 

  31. C. Xing Pin, S. Du, X. Rui, H.Guang Jie and L. Qing: Trans. Nonferrous Met. Soc. China., 2010, vol. 20, pp. 589–93.

    Article  Google Scholar 

  32. [32] S. Suwas, A.K. Singh, K.N. Rao and T. Singh: Z. Metallkd., 2002, vol. 93, pp. 928-37.

    Article  Google Scholar 

  33. [33] W. Liu, X. Kong, M. Chen, J. Li, H. Yuan and Q. Yang: Mater. Sci. Eng, 2009, vol. 516, pp. 263–69.

    Article  Google Scholar 

  34. [34] W. Liu, X. Li and X. Meng: Scr. Mater., 2009, vol. 60, pp. 768–71.

    Article  Google Scholar 

  35. [35] N. Nayan, S. Mishra, A. Prakash, S.V.S.N. Murty, M.J.N. V Prasad and I. Samajdar: Mater. Sci. Eng. A, 2019, vol. 740–741, pp. 252–61.

    Article  Google Scholar 

  36. [36] W.Y. Yeung and B.J. Duggan: Acta Mater., 1986, vol. 34, pp. 653–60.

    Article  Google Scholar 

  37. [37] N.P. Gurao, S. Sethuraman and S. Suwas: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7739–50.

    Article  Google Scholar 

  38. [38] S. Suwas, N.P. Gurao: Development of Microstructures and Textures by Cross Rolling, in: M.S.J. Hashmi (Ed.), Comprehensive materials processing, Elsevier, Oxford, 2014, pp. 81-106.

    Chapter  Google Scholar 

  39. [39] T. Ungár: Scr. Mater., 2004, vol. 51, pp. 777–781.

    Article  Google Scholar 

  40. [40] A.K. Zak, W.H.A. Majid, M.E. Abrishami and R. Youse: Solid State Sci., 2011, vol. 13, pp. 251-56.

    Article  Google Scholar 

  41. [41] R.R. Smallman and K.H. Westmacott: Philos Mag., 1957, vol. 2, pp. 669–83.

    Article  Google Scholar 

  42. K.S.V.B.R. Krishna, K. Chandra Sekhar, R. Tejas, N. Naga Krishna, K. Sivaprasad, R. Narayanasamy and K. Venkateswarlu: Mater. Des., 2015, vol. 67, pp. 107–17.

    Article  Google Scholar 

  43. [43] R.E. Smallman and D. Green: Acta. Mater., 1964, vol. 12, pp. 145-54.

    Article  Google Scholar 

  44. [44] H. Bunge: Texture Analysis in Materials ScienceMathematical Methods, Butterworth & Co., UK, 1982. pp. 88-89.

    Google Scholar 

  45. [45] M.Y. Huh, S.Y. Cho and O. Engler: Mater. Sci. Eng. A, 2001, vol. 315, pp. 35–46.

    Article  Google Scholar 

  46. [46] T. Ozturk: Scr. Mater., 1988, vol. 22, pp. 1611-16.

    Article  Google Scholar 

  47. [47] A. Bocker, H. Klein and H.J. Bunge: Textures and Microstruct., 1990, vol. 12, pp. 155–74.

    Article  Google Scholar 

  48. [48] P.P. Bhattacharjee, M. Joshi, V.P. Chaudhary and M. Zaid: Mater. Charact., 2012, vol. 76, 21–27.

    Article  Google Scholar 

  49. K. Chandra Sekhar, R. Narayanasamy and K. Velmanirajan: Mater. Des., 2014, vol. 53, pp. 1064–70.

    Article  Google Scholar 

  50. [50] G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company limited, UK, 1988, pp. 35-37.

    Google Scholar 

  51. [51] I.Samajdar and R.D. Doherty: Scr. Mater., 1995, vol. 32, pp. 845–50.

    Article  Google Scholar 

  52. [52] K. Velmanirajan, K. Anuradha, A.S. Abu, R. Narayanasamy, R. Madhavan and S. Suwas: Arch. Civ. Mech. Eng., 2013, vol. 14, pp. 398–16.

    Article  Google Scholar 

  53. [53] Y. Zhang and Z. Chen: Int. J. Fract., 2007, vol. 143, pp. 105–12.

    Article  Google Scholar 

  54. [54] S.C. Tang and L.B. Chappius: J. Mater. Manuf. Process, 1988, vol. 8, pp. 19–26.

    Google Scholar 

  55. [55] X. Gao, T. Wang and J. Kim: Int. J. Sol. Struct., 2005, vol. 42, pp. 5097–17.

    Article  Google Scholar 

  56. [56] Q. Zhao, Z. Liu, T. Huang, P. Xia and F. Li: Mater. Charact., 2016, vol.119, pp. 47-54.

    Article  Google Scholar 

  57. [57] F. Goli and R. Jamaati: Mater. Letters, 2018, vol. 219, pp. 229–32.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Professor I. Samajdar, Department of Metallurgical Engineering and Materials Science, National Facility, OIM and Texture Laboratory, IIT-Bombay, India, for providing the EBSD and bulk texture facilities. The authors also extend their thanks to Dr. S. Sankaran, Professor, Department of Metallurgical and Materials Engineering, IIT-Madras, India, for providing the cryorolling facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Sivaprasad or R. Narayanasamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 7, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneshwaran, S., Sivaprasad, K., Narayanasamy, R. et al. Superior Strength with Enhanced Fracture Resistance of Al-Mg-Sc Alloy Through Two-Step Cryo Cross Rolling. Metall Mater Trans A 50, 3265–3281 (2019). https://doi.org/10.1007/s11661-019-05253-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05253-6

Navigation