Skip to main content
Log in

Evolution of Microstructure, Mechanical Properties, and Thermal Conductivity of an Al-Li-Cu-Mg-Zr Alloy Processed by Accumulative Roll Bonding (ARB)

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Al-Li-Cu-Mg-Zr alloy was processed by accumulative roll bonding (ARB). The microstructure, mechanical properties, and thermal conductivity were investigated. With increasing number of ARB cycles, the microstructure was refined and the processed strips exhibited metallurgical bonding. During ARB processing, the tensile strength was enhanced while the elongation remained in a stable range. The sample after two cycles showed the best comprehensive combination of strain hardening, grain refinement, and high bonding quality, resulting in tensile strength, elongation, bending strength, and thermal conductivity of 322.34 MPa, 17.84%, 528.67 MPa, and 202.26 W/m K, respectively. Further increasing the rolling cycles weakened the investigated properties of the studied alloy. With increasing number of ARB cycles, the tensile fracture morphology revealed that the average dimple size steadily decreased, causing a change in the fracture type from ductile to mixed ductile–shear. The obtained ARB-processed samples resisted greater bending deformation with no damage or interfacial delamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Medjahed, A. Henniche, M. Derradji, T. Yu, Y. Wang, R. Wu, L. Hou, J. Zhang, X. Li, and M. Zhang, Mater. Sci. Eng. A 718, 241 (2018).

    Article  Google Scholar 

  2. A. Medjahed, H. Moula, A. Zegaoui, M. Derradji, A. Henniche, R. Wu, L. Hou, J. Zhang, and M. Zhang, Mater. Sci. Eng. A 732, 129 (2018).

    Article  Google Scholar 

  3. Y. Wang, Z. Li, T. Yu, A. Medjahed, R. Wu, L. Hou, J. Zhang, X. Li, and M. Zhang, Adv. Eng. Mater. 20, 1700898 (2018).

    Article  Google Scholar 

  4. T. Yu, B. Li, A. Medjahed, L. Hou, R. Wu, J. Zhang, J. Sun, and M. Zhang, Mater. Charact. 147, 146 (2019).

    Article  Google Scholar 

  5. A. Medjahed, M. Derradji, A. Zegaoui, R. Wu, B. Li, Y. Wang, L. Hou, J. Zhang, and M. Zhang, Adv. Eng. Mater. 1800779 (2018).

  6. A. Medjahed, M. Derradji, A. Zegaoui, R. Wu, and B. Li, Compos. Struct. 210, 421 (2019).

    Article  Google Scholar 

  7. A. Zegaoui, M. Derradji, R. Ma, W.-A. Cai, A. Medjahed, W.-B. Liu, A.Q. Dayo, and J. Wang, Vacuum 150, 12 (2018).

    Article  Google Scholar 

  8. T. Dursun and C. Soutis, Mater. Des. 56, 862 (2014).

    Article  Google Scholar 

  9. N.E. Prasad, A. Gokhale, and R. Wanhill, Aluminum-Lithium Alloys: Processing, Properties, and Applications, 1st ed. (Oxford: Butterworth-Heinemann, 2013), p. 608.

    Google Scholar 

  10. N.E. Prasad and R.J. Wanhill, Aerospace Materials and Material Technologies, 1st ed. (Singapore: Springer, 2017), p. 586.

    Book  Google Scholar 

  11. H. Xie, M. Wang, W. Chen, and Y. Jia, J. Mater. Eng. Perform. 25, 1199 (2016).

    Article  Google Scholar 

  12. H. Wu, T. Wang, R. Wu, L. Hou, J. Zhang, X. Li, and M. Zhang, J. Mater. Process. Technol. 254, 265 (2018).

    Article  Google Scholar 

  13. H. Zheng, J. Yang, R. Wu, T. Wang, X. Ma, L. Hou, M. Zhang, S. Betsofen, and B. Krit, Adv. Eng. Mater. 18, 1792 (2016).

    Article  Google Scholar 

  14. R. Kapoor, A. Sarkar, R. Yogi, S. Shekhawat, I. Samajdar, and J.K. Chakravartty, Mater. Sci. Eng. A 560, 404 (2013).

    Article  Google Scholar 

  15. A. Shamsolhodaei, A. Zarei-Hanzaki, and M.J.M.S. Moghaddam, Mater. Sci. Eng. A 700, 1 (2017).

    Article  Google Scholar 

  16. M. Reihanian, R. Ebrahimi, M. Moshksar, D. Terada, and N. Tsuji, Mater. Sci. Eng. A 59, 1312 (2008).

    Google Scholar 

  17. X. Wang, M. Nie, C.T. Wang, S.C. Wang, and N. Gao, Mater. Des. 83, 193 (2015).

    Article  Google Scholar 

  18. R. Kocich, L. Kunčická, P. Král, and T.C. Lowe, Mater. Des. 90, 1092 (2016).

    Article  Google Scholar 

  19. J.J. Rino, I.J. Krishnan, S.B. Prabu, and K.A. Padmanabhan, Mater. Charact. 140, 55 (2018).

    Article  Google Scholar 

  20. K. Rodak, A. Urbańczyk-Gucwa, M. Jabłońska, J. Pawlicki, and J. Mizera, Arch. Civ. Mech. Eng. 18, 331 (2018).

    Article  Google Scholar 

  21. S.G. Chowdhury, A. Dutta, B. Ravikumar, and A. Kumar, Mater. Sci. Eng. A 428, 351 (2006).

    Article  Google Scholar 

  22. T. Wang, H. Zheng, R. Wu, J. Yang, X. Ma, and M. Zhang, Adv. Eng. Mater. 18, 304 (2016).

    Article  Google Scholar 

  23. Z. Trojanová, J. Džugan, K. Halmešová, G. Németh, P. Minárik, P. Lukáč, and J. Bohlen, Materials (Basel) 11, 73 (2018).

    Article  Google Scholar 

  24. H. Alvandi and K. Farmanesh, Procedia Mater. Sci. 11, 17 (2015).

    Article  Google Scholar 

  25. A. Alil, M. Popović, J. Bajat, and E. Romhanji, Mater. Corros. 69, 858 (2018).

    Article  Google Scholar 

  26. Z. Wang, M. Ma, Z. Qiu, J. Zhang, and W.C. Liu, Mater. Charact. 139, 269 (2018).

    Article  Google Scholar 

  27. M. Heydari Vini and M. Sedighi, Can. Metall. Q. 57, 160 (2018).

    Article  Google Scholar 

  28. S. Choi, H. Cho, and S. Kumai, J. Alloys Compd. 688, 897 (2016).

    Article  Google Scholar 

  29. J. Yuan, K. Zhang, X. Zhang, X. Li, T. Li, Y. Li, M. Ma, and G. Shi, J. Alloys Compd. 578, 32 (2013).

    Article  Google Scholar 

  30. P. Lehto, H. Remes, T. Saukkonen, H. Hänninen, and J. Romanoff, Mater. Sci. Eng. A 592, 28 (2014).

    Article  Google Scholar 

  31. N. Anbarasan, B.K. Gupta, S. Prakash, P. Muthukumar, R. Oyyaravelu, R.J.F. Kumar, and S. Jerome, Mater. Today Proc. 5, 7716 (2018).

    Article  Google Scholar 

  32. N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, Adv. Eng. Mater. 5, 338 (2003).

    Article  Google Scholar 

  33. Z. Wang, L. Zhai, M. Ma, H. Yuan, and W.C. Liu, Mater. Sci. Eng. A 644, 194 (2015).

    Article  Google Scholar 

  34. L. Su, C. Lu, H. Li, G. Deng, and K. Tieu, Mater. Sci. Eng. A 614, 148 (2014).

    Article  Google Scholar 

  35. M. Alizadeh and M.H. Paydar, Mater. Des. 30, 82 (2009).

    Article  Google Scholar 

  36. X. Li, T. Al-Samman, and G. Gottstein, Mater. Lett. 65, 1907 (2011).

    Article  Google Scholar 

  37. L. Hou, T. Wang, R. Wu, J. Zhang, M. Zhang, A. Dong, B. Sun, S. Betsofen, and B. Krit, J. Mater. Sci. Technol. 34, 317 (2018).

    Article  Google Scholar 

  38. M. Abbasi and S. Sajjadi, J. Compos. Mater. 52, 147 (2018).

    Article  Google Scholar 

  39. M. Starink, Mater. Sci. Eng. A 390, 260 (2005).

    Article  Google Scholar 

  40. R. Cao, X. Zhao, Y. Ding, X. Zhang, X. Jiang, Y. Yan, and J. Chen, Mater. Charact. 139, 153 (2018).

    Article  Google Scholar 

  41. T. Ying, M. Zheng, Z. Li, and X. Qiao, J. Alloys Compd. 608, 19 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizhi Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medjahed, A., Li, B., Hou, L. et al. Evolution of Microstructure, Mechanical Properties, and Thermal Conductivity of an Al-Li-Cu-Mg-Zr Alloy Processed by Accumulative Roll Bonding (ARB). JOM 71, 4096–4104 (2019). https://doi.org/10.1007/s11837-019-03646-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03646-x

Navigation