Skip to main content
Log in

Effect of Ag Content on the Microstructure and Crystallization of Coupled Eutectic Growth in Directionally Solidified Al-Cu-Ag Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A series of coupled eutectic growths along the univariant eutectic groove in the ternary Al-Cu-Ag alloy was studied to investigate the effect of Ag on the microstructure and crystallization of directionally solidified Al-Cu-Ag alloys. The results indicated that the eutectic morphology and orientation relationship (OR) between eutectic phases were modified as the Ag content in the Al-Cu-Ag alloys increased. At a lower growth velocity (R ≤ 1 μm/s), a banded structure formed and the interlamellar spacing decreased with the increasing Ag content. At a higher growth velocity (R ≥ 3 μm/s), the eutectic cell spacing decreased with increasing Ag content. Increasing the Ag content in the Al-Cu-Ag alloys enhanced the enrichment of the Ag solute in the liquid ahead of the quenched liquid/solid interface. In addition, increasing the Ag content in the Al-Cu-Ag alloys promoted the transformation from a “Beta 6” OR to an “Alpha 4” OR between eutectic phases. Modifications of the eutectic morphology and the OR during directional solidification were attributed to the enrichment of Ag content at the solid/liquid interface and the changes in the interfacial energy due to the increase in Ag solubility in the α-Al phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. JD Wilde, L Froyen. Microgravity Sci. Tec., 2005, vol.16(1), pp. 40-44.

    Article  Google Scholar 

  2. M Plapp, A Karma. Phys. Rev. E, 1999, vol. 60(6), pp. 6865-89.

    Article  Google Scholar 

  3. JD Wilde, L Froyen, S Rex. Scripta Mater., 2004, vol. 51(6), pp: 533-38.

    Article  Google Scholar 

  4. Wilde JD, Froyen L, Witusiewicz VT, Hecht U. J. Appl. Phys., 2005, 97(11), 113515.

    Article  Google Scholar 

  5. Hecht U, Witusiewicz V, Drevermann A. IOP Conf. Series: Mater. Sci. Eng., 2012, 27(1), 012029.

    Article  Google Scholar 

  6. HQ Bao, FCL Durand. J.Cryst. Growth, 1972, vol. 15(4), pp: 291-95.

    Article  Google Scholar 

  7. JD Holder, BF Oliver. Metall. Trans., 1974, 5(11), 2423-37.

    Article  Google Scholar 

  8. G Garmong. Metall. Mater. Trans. B, 1971, vol. 2(8), pp: 2025-30.

    Article  Google Scholar 

  9. PJ Fehrenbach, HW Kerr, P Niessen. J.Cryst. Growth, 1972, vol. 16(3), pp: 209-14.

    Article  Google Scholar 

  10. FW Schnake, GA Varschavsky. Mater.Charact., 1997, vol. 39(2), pp: 345-59.

    Article  Google Scholar 

  11. WW Mullins, RF Sekerka. . Appl. Phys., 1964, vol. 35(2), pp: 444-51.

    Article  Google Scholar 

  12. U Böyük, N Maraşlı, H Kaya, E Çadırlı, K Keşlioğlu. Appl. Phys. A, 2009, vol. 95(3), pp: 923-32.

    Article  Google Scholar 

  13. A Dennstedt, L Ratke. Trans. Indian Inst. Met., 2012, vol. 65(6), pp: 777-82.

    Article  Google Scholar 

  14. B Zhou, L Froyen. Trans. Indian Inst. Met., 2014, vol. 67(1), pp: 57-65.

    Article  Google Scholar 

  15. AL Genau, L Ratke. IOP Conf. Series: Mater. Sci. Eng., 2012, 27(1), 012032.

    Article  Google Scholar 

  16. J Hötzer, M Jainta, P Steinmetz, B Nestler, A Dennstedt, A Genau, et al.Acta Mater.,2015, vol. 93, pp: 194-204.

    Article  Google Scholar 

  17. P Steinmetz, YC Yabansu, J Hötzer,MJainta, B Nestler, SR Kalidindi. Acta Mater.,2016, vol. 103, pp: 192-203.

    Article  Google Scholar 

  18. V Kokotin, U Hecht. Comput. Mater. Sci., 2014, vol. 86, pp: 30-37.

    Article  Google Scholar 

  19. VT Witusiewicz, U Hecht, SG Fries, S Rex. J. Alloys Compd., 2005, vol. 387(1), pp: 217-27.

    Article  Google Scholar 

  20. R. Bonnet, F. Durand: Confer. on in situ composites., 1973. pp. 209–23.

  21. MD Rinaldi, RM Sharp, MC Flemings. Metall. Trans., 1972, 3(12), 3139-48.

    Article  Google Scholar 

  22. A Drevermann, U Hecht, V Witusiewicz, B Böttger, S Rex. Microgravity Sci. Tec., 2005, vol. 16(1), pp: 45-49.

    Article  Google Scholar 

  23. KA Jackson, JD Hunt. Metall. Soc. AIME, 1966, vol. 236, pp: 1129-42.

    Google Scholar 

  24. VT Witusiewicz, U Hecht, S Rex. J. Cryst. Growth, 2013, vol. 372, pp: 57-64.

    Article  Google Scholar 

  25. O Senninger, PW Voorhees, Acta Mater., 2016, vol. 116 pp: 308-20.

    Article  Google Scholar 

  26. O Senninger, M Peters, PW Voorhees, Metall. Mat. Trans. A, 2018, https://doi.org/10.1007/s11661-018-4488-4.

    Google Scholar 

  27. A Genau, L Ratke. Inter. J. Mater. Res., 2012, vol. 103(4), pp: 469-75.

    Article  Google Scholar 

  28. JD Wilde, E Nagels, F Lemoisson, Froyen L. Mater. Sci. Eng. A, 2005, 413, 514-20.

    Article  Google Scholar 

  29. S Akamatsu, S Bottin-Rousseau, M Şerefoğlu, G Faivre. Acta Mater., 2012, vol. 60(6–7), pp: 3206-14.

    Article  Google Scholar 

  30. T Haxhimali, AKarma, F Gonzales, M Rappaz. Nature Mater., 2006, vol. 5, pp: 660.

    Article  Google Scholar 

  31. N Maraşli, JD Hunt. Acta Mater., 1996, vol. 44(3), pp: 1085-96.

    Article  Google Scholar 

  32. JAV Butler. Proc. R. Soc. Lond. A 1932, vol. 135(827), pp: 348-75.

    Article  Google Scholar 

  33. WR Tyson, WA Miller. Surf. Sci., 1977, vol. 62(1), pp: 267-76.

    Article  Google Scholar 

  34. S Guldberg, N Ryum, Mater. Sci. Eng. A, 2000, vol. 289, pp: 143-50.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Technology R&D Program of China (No. 2016YFB0701405), the European Space Agency through the Bl-inter 09_473220, National Natural Science Foundation of China (Nos. 51271109 and 51171106), Aeronautical Science Foundation of China (2015ZE57011), Shanghai Science and Technology Committee Grant (Nos. 13DZ1108200, 13521101102 and 16DZ2260600), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the China Postdoctoral Science Foundation (2017M620154), and the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201732).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anping Dong, Da Shu or Xi Li.

Additional information

Manuscript submitted January 1, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, D., Fautrelle, Y., Dong, A. et al. Effect of Ag Content on the Microstructure and Crystallization of Coupled Eutectic Growth in Directionally Solidified Al-Cu-Ag Alloys. Metall Mater Trans A 49, 4735–4747 (2018). https://doi.org/10.1007/s11661-018-4799-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4799-5

Navigation