Skip to main content
Log in

Effects of Ag variations on dynamic recrystallization, texture, and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the effects of Ag variations on dynamic recrystallization (DRX), texture, and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloys are investigated. The results suggest that Ag segregation and Al–Zn–Ag clusters form in the Mg matrix with Ag addition less than 1 wt%, which retard DRX and the growth of the DRXed grains. The resulting grain size decreases from 513 to 316 nm. As the Ag addition increases to 2 wt%, the Mg54Ag17 phase precipitates along the grain boundary, which plays an important role in restricting DRXed grain growth via grain boundary pinning effect. The resulting grain size is 375 nm with a bimodal grain size distribution. The extrusion texture of the investigated alloys is in fairly scattered orientation distribution. The weak basal texture and ultrafine grain size lead to the high yield asymmetry ratio. The Ag-containing extruded alloys exhibit an increase in the tensile and compressive properties. The strengthening mechanisms due to grain refinement, dislocations, solid solution, precipitates, solute clusters, and segregation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Magnesium: Properties-applications-potential. Mater. Sci. Eng., A 302, 37–45 (2001).

    Article  Google Scholar 

  2. S.H. Park and B.S. You: Effect of homogenization temperature on the microstructure and mechanical properties of extruded Mg–7Sn–1Al–1Zn alloy. J. Alloys Compd. 637, 332–338 (2015).

    Article  CAS  Google Scholar 

  3. M. Vogel, O. Kraft, and E. Arzt: Creep behavior of magnesium die-cast alloy ZA85. Scr. Mater. 48, 985–990 (2003).

    Article  CAS  Google Scholar 

  4. X. Gao, S.M. Zhu, B.C. Muddle, and J.F. Nie: Precipitation-hardened Mg–Ca–Zn alloys with superior creep resistance. Scr. Mater. 53, 1321–1326 (2005).

    Article  CAS  Google Scholar 

  5. S.H. Park, J.G. Jung, Y.M. Kim, and B.S. You: A new high-strength extruded Mg–8Al–4Sn–2Zn alloy. Mater. Lett. 139 (15), 35–38 (2015).

    Article  CAS  Google Scholar 

  6. Y. Estrin, S.S. Nene, B.P. Kashyap, N. Prabhu, and T. Al-Samman: New hot rolled Mg–4Li–1Ca alloy: A potential candidate for automotive and biodegradable implant applications. Mater. Lett. 173, 252–256 (2016).

    Article  CAS  Google Scholar 

  7. T. Homma, N. Kunito, and S. Kamado: Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr. Mater. 61 (6), 644–647 (2009).

    Article  CAS  Google Scholar 

  8. W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu: Ultrastrong Mg alloy via nano-spaced stacking faults. Mater. Res. Lett. 1, 61–66 (2013).

    Article  CAS  Google Scholar 

  9. X. Gao and J.F. Nie: Enhanced precipitation-hardening in Mg–Gd alloys containing Ag and Zn. Scr. Mater. 58 (8), 619–622 (2008).

    Article  CAS  Google Scholar 

  10. Y.M. Zhu, A.J. Morton, and J.F. Nie: Improvement in the age-hardening response of Mg–Y–Zn alloys by Ag additions. Scr. Mater. 58 (7), 525–528 (2008).

    Article  CAS  Google Scholar 

  11. S.C. Park, J.D. Lim, D. Eliezer, and K.S. Shin: Microstructure and mechanical properties of Mg–Zn–Ag alloys. Mater. Sci. Forum 419–422, 159–164 (2003).

    Article  Google Scholar 

  12. A. Movahedi-Rad and R. Mahmudi: Effect of Ag addition on the elevated-temperature mechanical properties of an extruded high strength Mg–Gd–Y–Zr alloy. Mater. Sci. Eng., A 614, 62–66 (2014).

    Article  CAS  Google Scholar 

  13. G. Ben-Hamu, D. Eliezer, A. Kaya, Y.G. Na, and K.S. Shin: Microstructure and corrosion behavior of Mg–Zn–Ag alloys. Mater. Sci. Eng., A 435–436, 579–587 (2006).

    Article  CAS  Google Scholar 

  14. F.J. Humphreys and M. Hatherly: Recrystallization, and Related Annealing Phenomena (Elsevier Science Ltd., Oxford, United Kingdom, 1995).

    Google Scholar 

  15. E.A. Grey and G.T. Higgins: Solute limited grain boundary migration: A rationalisation of grain growth. Acta Metall. 21 (4), 309–321 (1973).

    Article  CAS  Google Scholar 

  16. J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser, and S.R. Agnew: Role of solute in the texture modification during hot deformation of Mg-rare earth alloys. Metall. Mater. Trans. A 43 (4), 1347–1362 (2012).

    Article  CAS  Google Scholar 

  17. A. Galiyev, R. Kaibyshev, and G. Gottstein: Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 49 (7), 1199–1207 (2001).

    Article  CAS  Google Scholar 

  18. R. Kaibyshev and O. Sitdikov: 3rd Int. Conf. on Recrystallization and Related Phenomena (Monterey Inst. Advanced Studies, Monterey, CA, 1997); pp. 203–209.

    Google Scholar 

  19. D.G. Cram, X.Y. Fang, H.S. Zurob, Y.J.M. Bréchet, and C.R. Hutchinson: The effect of solute on discontinuous dynamic recrystallization. Acta Mater. 60 (18), 6390–6404 (2012).

    Article  CAS  Google Scholar 

  20. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60, 130–207 (2014).

    Article  CAS  Google Scholar 

  21. A.G. Beer and M.R. Barnett: Microstructural development during hot working of Mg–3Al–1Zn. Metall. Mater. Trans. A 38 (8), 1856–1867 (2007).

    Article  CAS  Google Scholar 

  22. S.A. Farzadfar, E. Martin, M. Sanjari, E. Essadiqi, and S. Yue: Texture weakening and static recrystallization in rolled Mg–2.9Y and Mg–2.9Zn solid solution alloys. J. Mater. Sci. 47, 5488–5500 (2012).

    Article  CAS  Google Scholar 

  23. C.S. Smith: Grains, phases, and interfaces: An interpretation of microstructure. Trans. Am. Inst. Min. Eng. 175, 15–51 (1948).

    Google Scholar 

  24. J. Feng, H.F. Sun, J.C. Li, X.W. Li, J. Zhang, W. Fang, and W.B. Fang: Tensile flow and work hardening behaviors of ultrafine-grained Mg–3Al–Zn alloy at elevated temperatures. Mater. Sci. Eng., A 667, 97–105 (2016).

    Article  CAS  Google Scholar 

  25. S. Berbeni, V. Favier, and M. Berveiller: Micro–macro modeling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials. Comput. Mater. Sci. 39 (1), 96–105 (2007).

    Article  CAS  Google Scholar 

  26. W.Z. Chen, Y. Yu, X. Wang, E.D. Wang, and Z.Y. Liu: Optimization of rolling temperature for ZK61 alloy sheets via microstructure uniformity analysis. Mater. Sci. Eng., A 575, 136–143 (2013).

    Article  CAS  Google Scholar 

  27. K. Tsuzaki, X.X. Huang, and T. Maki: Mechanism of dynamic continuous recrystallization during superplastic deformation in a microduplex stainless steel. Acta Mater. 44 (11), 4491–4499 (1996).

    Article  CAS  Google Scholar 

  28. S. Gourdet and F. Montheillet: A model of continuous dynamic recrystallization. Acta Mater. 51 (9), 2685–2699 (2003).

    Article  CAS  Google Scholar 

  29. J.W. Cahn: The impurity-drag effect in grain boundary motion. Acta Metall. 10 (9), 789–798 (1962).

    Article  CAS  Google Scholar 

  30. J.P. Hadorn, T.T. Sasaki, T. Nakata, T. Ohkubo, S. Kamado, and K. Hono: Solute clustering and grain boundary segregation in extruded dilute Mg–Gd alloys. Scr. Mater. 93, 28–31 (2014).

    Article  CAS  Google Scholar 

  31. P.A. Beck: Recrystallization of lead. Trans. AIME 133, 222–233 (1939).

    Google Scholar 

  32. X.F. Huang, Z.Z. Shi, and W.Z. Zhang: Transmission electron microscopy investigation and interpretation of the morphology and interfacial structure of the ε′-Mg54Ag17 precipitates in an Mg–Sn–Mn–Ag–Zn alloy. J. Appl. Crystallogr. 47 (5), 1676–1687 (2014).

    Article  CAS  Google Scholar 

  33. X.F. Huang and W.Z. Zhang: Characterization and interpretation on the new crystallographic features of a twin-related ε′-Mg54Ag17 precipitates in an Mg–Sn–Mn–Ag–Zn alloy. J. Alloys Compd. 582, 764–768 (2014).

    Article  CAS  Google Scholar 

  34. H.T. Son, D.G. Kim, and J.S. Park: Effects of Ag addition on microstructures and mechanical properties of Mg–6Zn–2Sn–0.4Mn-based alloy system. Mater. Lett. 65 (19–20), 3150–3153 (2011).

    Article  CAS  Google Scholar 

  35. X.F. Huang and W.Z. Zhang: Improved age-hardening behavior of Mg–Sn–Mn alloy by addition of Ag and Zn. Mater. Sci. Eng., A 552, 211–221 (2012).

    Article  CAS  Google Scholar 

  36. J.G. Jung, S.H. Park, and B.S. You: Effect of aging prior to extrusion on the microstructure and mechanical properties of Mg–7Sn–1Al–1Zn alloy. J. Alloys Compd. 627, 324–332 (2015).

    Article  CAS  Google Scholar 

  37. R.H. Li, F.S. Pan, B. Jiang, H.W. Dong, and Q.S. Yang: Effect of Li addition on the mechanical behavior and texture of the as-extruded AZ31 magnesium alloy. Mater. Sci. Eng., A 562, 33–38 (2013).

    Article  CAS  Google Scholar 

  38. M.T. Pérez-Prado, J.A. del Valle, and O.A. Ruano: Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling. Scr. Mater. 50 (5), 667–671 (2004).

    Article  CAS  Google Scholar 

  39. W.P. Jia, X.D. Hu, H.Y. Zhao, D.Y. Ju, and D.L. Chen: Texture evolution of AZ31 magnesium alloy sheets during warm rolling. J. Alloys Compd. 645, 70–77 (2015).

    Article  CAS  Google Scholar 

  40. S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, and V.H. Hammond: Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy. Scr. Mater. 67 (5), 439–442 (2012).

    Article  CAS  Google Scholar 

  41. B.Q. Shi, R.S. Chen, and W. Ke: Influence of grain size on the tensile ductility and deformation modes of rolled Mg–1.02 wt% Zn alloy. J. Magnesium Alloys 1 (3), 210–216 (2013).

    Article  CAS  Google Scholar 

  42. B. Kim, C.H. Park, H.S. Kim, B.S. You, and S.S. Park: Grain refinement and improved tensile properties of Mg–3Al–1Zn alloy processed by low-temperature indirect extrusion. Scr. Mater. 76, 21–24 (2014).

    Article  CAS  Google Scholar 

  43. Y. Zou, L.H. Zhang, H.T. Wang, X. Tong, M.L. Zhang, and Z.W. Zhang: Texture evolution and their effects on the mechanical properties of duplex Mg–Li alloy. J. Alloys Compd. 669, 72–78 (2016).

    Article  CAS  Google Scholar 

  44. Q. Yang, F.Q. Bu, X. Qiu, Y.D. Li, W.R. Li, W. Sun, X.J. Liu, and J. Meng: Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy. J. Alloys Compd. 665, 240–250 (2016).

    Article  CAS  Google Scholar 

  45. S.C. Wang, F. Lefebvre, J.L. Yan, I. Sinclair, and M.J. Starink: VPPA welds of Al-2024 alloys: Analysis and modelling of local microstructure and strength. Mater. Sci. Eng., A 431, 123–136 (2006).

    Article  CAS  Google Scholar 

  46. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52 (17), 5093–5103 (2004).

    Article  CAS  Google Scholar 

  47. E. Mora, G. Garcés, E. Onǒrbe, P. Pérez, and P. Adeva: High-strength Mg–Zn–Y alloys produced by powder metallurgy. Scr. Mater. 60, 776–779 (2009).

    Article  CAS  Google Scholar 

  48. Y. Chen, N. Gao, G. Sha, S.P. Ringer, and M.J. Starink: Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy. Acta Mater. 109, 202–212 (2016).

    Article  CAS  Google Scholar 

  49. R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.U. Kazykhanov, and X. Sauvage: On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr. Mater. 63, 949–952 (2010).

    Article  CAS  Google Scholar 

  50. R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, S.E. Aleksandrov, and R.V. Goldshtein: Superstrength of ultrafine-grained aluminum alloys produced by severe plastic deformation. Dokl. Phys. 55, 267–270 (2010).

    Article  CAS  Google Scholar 

  51. Y. Chen, N. Gao, G. Sha, S.P. Ringer, and M.J. Starink: Strengthening of an Al–Cu–Mg alloy processed by high-pressure torsion due to clusters, defects defect-cluster complexes. Mater. Sci. Eng., A 627, 10–20 (2015).

    Article  CAS  Google Scholar 

  52. M.H. Li, Y.Q. Yang, Z.Q. Feng, G.H. Feng, B. Huang, Y.X. Chen, M. Han, and J.G. Ru: Influence of equal-channel angular pressing on aging precipitation in 7050 Al alloy. Intermetallics 55, 49–55 (2014).

    Article  CAS  Google Scholar 

  53. R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp, and K.K. Sankaran: Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy. Mater. Sci. Eng., A 527, 5246–5254 (2010).

    Article  CAS  Google Scholar 

  54. M. Huppmann and W. Reimers: Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy. Int. J. Mater. Res. 101, 1264–1271 (2010).

    Article  CAS  Google Scholar 

  55. S.W. Xu, K. Oh-ishi, S. Kamado, F. Uchida, T. Homma, and K. Hono: High-strength extruded Mg–Al–Ca–Mn alloy. Scr. Mater. 65 (3), 269–272 (2011).

    Article  CAS  Google Scholar 

  56. B. Song, R.L. Xin, N. Guo, J.B. Xu, L.Y. Sun, and Q. Liu: Dependence of tensile and compressive deformation behavior on aging precipitation in rolled ZK60 alloys. Mater. Sci. Eng., A 639, 724–731 (2015).

    Article  CAS  Google Scholar 

  57. J. Wang, R.G. Hoagland, J.P. Hirth, L. Capolungo, I.J. Beyerleinb, and C.N. Tomé: Nucleation of a (1012) twin in hexagonal close-packed crystals. Scr. Mater. 61 (9), 903–906 (2009).

    Article  CAS  Google Scholar 

  58. M.A. Meyers, O. Vöhringer, and V.A. Lubarda: The onset of twinning in metals: A constitutive description. Acta Mater. 49 (19), 4025–4039 (2001).

    Article  CAS  Google Scholar 

  59. S. Kleiner and P.J. Uggowitzer: Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater. Sci. Eng., A 379 (1–2), 258–263 (2004).

    Article  CAS  Google Scholar 

  60. S.W. Xu, K. Oh-ishi, H. Sunohara, and S. Kamado: Extruded Mg–Zn–Ca–Mn alloys with low yield anisotropy. Mater. Sci. Eng., A 558, 356–365 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Sun, H., Li, X. et al. Effects of Ag variations on dynamic recrystallization, texture, and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloys. Journal of Materials Research 31, 3360–3371 (2016). https://doi.org/10.1557/jmr.2016.348

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.348

Navigation