Skip to main content
Log in

Effect of Temperature on the Initial Oxidation Behavior and Kinetics of 5Cr Ferritic Steel in Air

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The oxidation behavior of 5 wt pct Cr (5Cr) ferritic steel in air at high temperatures has been investigated. A connected Cu-rich layer adjacently forms in inner oxidation layer (IOL) at 500 °C to 600 °C in addition to the formation of a continuous Cr-rich and Si-rich ribbon. Their synergistic effects imped growth of the Fe-rich oxide film towards the outer oxidation layer (OOL) and thus improve the oxidation resistance of 5Cr steel. With increasing oxidation temperature, the Cr, Si, and Cu oxide scales are gradually damaged and spallation of the oxide scale occurs at 1000 °C. Regarding the reaction kinetics, oxidation is controlled by oxygen inward diffusion. A gas–solid model is used to describe the oxidation behavior of 5Cr steel at 500 °C to 900 °C and there is good agreement with the experimental data. In particular, this model can predict the oxidation behavior and the typical results at 750 °C and 850 °C are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Cortie: Ferritic stainless steels, in: Encyclopedia of Materials: Science and Technology, 2nd ed., Elsevier, Oxford, 2001, pp. 3037-9.

  2. V.B. Trindade, R. Borin, B.Z. Hanjari, S. Yang, U. Krupp, and H. Christ: Mater. Res., 2005, vol. 8, pp. 365-69.

    Article  Google Scholar 

  3. A.R. Setiawan, M.H.B. Ani, M. Ueda, K. Kawamura, and T. Maruyama: ISIJ Int., 2010, vol. 50, pp. 259-63.

    Article  Google Scholar 

  4. I.B. Singh, O.P. Modi, and G. Ruhi: J. Sol-Gel Sci. Technol., 2015, vol. 74, pp. 685-91.

    Article  Google Scholar 

  5. A.S. Khanna and J.B. Gnanamoorthy: Oxid. Met., 1982, vol. 18, pp. 315-30.

    Article  Google Scholar 

  6. P.A. Labun, J. Covington, K. Kuroda, G. Welsch, and T.E. Mitchell: Metall. Mater. Trans. A, 1982, vol. 13, pp. 2103-12.

    Article  Google Scholar 

  7. A.S. Khanna, B.B. Jha, and B. Raj: Oxid. Met., 1985, vol. 23, pp. 159-76.

    Article  Google Scholar 

  8. J. Wang, S. Lu, L. Rong, D. Li, and Y. Li, Corros. Sci., 2016, vol. 111, pp. 13-25.

    Article  Google Scholar 

  9. G.O. Lloyd, S.R.J. Saunders, B. Kent, and A. Fursey: Corros. Sci., 1977, vol. 17, pp. 269-99.

    Article  Google Scholar 

  10. D. Lai, R.J. Borg, M.J. Brabers, J.D. Mackenzie, and C.E. Birchenall: Corrosion, 1961, vol. 17, pp. 357-64.

    Article  Google Scholar 

  11. A.K. Shukla, D. Gond, M. Bharadwaj, and D. Puri: J. Miner. Mater. Charact. Eng., 2011, vol. 10, pp. 1061-75.

    Google Scholar 

  12. S.G. Wang, M. Sun, H.B. Han, K. Long, and Z.D. Zhang: Corros. Sci., 2013, vol. 72, pp. 64-72.

    Article  Google Scholar 

  13. G. Bamba, Y. Wouters, A. Galerie, F. Charlot, and A. Dellali, Acta Mater., 2006, vol. 54, pp. 3917-22.

    Article  Google Scholar 

  14. A. Safikhani, M. Esmailian, M.R. Salmani and M. Aminfard: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 11210-23.

    Article  Google Scholar 

  15. X. Cheng, Z. Jiang, B.J. Monaghan, D. Wei, R.J. Longbottom, J. Zhao, and J. Jiang: Corros. Sci., 2016, vol. 108, pp. 11-22.

    Article  Google Scholar 

  16. V. Lepingle, G. Louis, D. Allué, B. Lefebvre, and B. Vandenberghe: Corros. Sci., 2008, vol. 50, pp. 1011-19.

    Article  Google Scholar 

  17. A.S. Khanna, P. Rodriguez, and J.B. Gnanamoorthy: Oxid. Met., 1986, vol. 26, pp. 171-200.

    Article  Google Scholar 

  18. D.L.A. De Faria, S. Venâncio Silva, and M.T. De Oliveira: J. Raman Spectrosc., 1997, vol. 28, pp. 873-78.

    Article  Google Scholar 

  19. K.F. McCarty and D.R. Boehme: J. Solid State Chem., 1989, vol. 79, pp. 19-27.

    Article  Google Scholar 

  20. M.H.B. Ani, T. Kodama, M. Ueda, K. Kawamura, and T. Maruyama: Mater. Trans., 2009, vol. 50, pp. 2656-63.

    Article  Google Scholar 

  21. A. Bowen and G. Leak: Metall. Trans., 1970, vol. 1, pp. 2767-73.

    Article  Google Scholar 

  22. M.P. Shor: The Design of a functionally graded composite for service in high temperature lead and lead-bismuth cooled nuclear reactors, Massachusetts Institute of Technology, 2010.

  23. J.H. Kim, D.I. Kim, J.H. Shim, and K.W. Yi: Corros. Sci., 2013, vol. 77, pp. 397-402.

    Article  Google Scholar 

  24. A.P. Greeff, C.W. Louw, and H.C. Swar: Corros. Sci., 2000, vol. 42, pp. 1725-40.

    Article  Google Scholar 

  25. B. Hua, Y. Kong, W. Zhang, J. Pu, B. Chi, and L. Jian: J. Power Sources, 2011, vol. 196, pp. 7627-38.

    Article  Google Scholar 

  26. N.K. Othman, J. Zhang, and D.J. Young: Corros. Sci., 2010, vol. 52, pp. 2827-36.

    Article  Google Scholar 

  27. G. Salje and M. Feller-Kniepmeier: J. Appl. Phys., 1977, vol. 48, pp. 1833-39.

    Article  Google Scholar 

  28. D.G. Barnes, J.M. Calvert, K.A. Hay, and D.G. Lees: Philos. Mag., 1973, vol. 28, pp. 1303-18.

    Article  Google Scholar 

  29. N. Birks, G.H. Meier, and F.S. Pettit: Introduction to the high-temperature oxidation of metals, 2nd ed., Cambridge University Press, New York, USA, 2006.

    Book  Google Scholar 

  30. A. Brückman and J. Romanski: Corros. Sci., 1965, vol. 5 pp. 185-91.

    Article  Google Scholar 

  31. E. Huttunen-Saarivirta, V.T. Kuokkala, and P. Pohjanne: Corros. Sci., 2014, vol. 87, pp. 344-65.

    Article  Google Scholar 

  32. K.C. Chou: J. Am. Ceram. Soc., 2006, vol. 89, pp. 1568-76.

    Article  Google Scholar 

  33. X.M. Hou, E.H. Wang, Y.X. Liu, and K.C. Chou: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1621-27.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their appreciation to the National Science Foundation for Excellent Young Scholars of China (No. 51522402), the National Science Foundation of China (No. 51572019 and U1460201), the Special Fund of the National Excellent Doctoral Dissertation (No. 201437), the National Key Research and Development Program (2017YFB0304905), and the Central Universities of No. FRF-TP-15-006C1 for financial support. In addition, the authors thank Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibin Wu.

Additional information

Manuscript submitted December 4, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, E., Cheng, J., Ma, J. et al. Effect of Temperature on the Initial Oxidation Behavior and Kinetics of 5Cr Ferritic Steel in Air. Metall Mater Trans A 49, 5169–5179 (2018). https://doi.org/10.1007/s11661-018-4781-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4781-2

Navigation