Skip to main content
Log in

High-temperature oxidation behavior of 9Cr-5Si-3Al ferritic heat-resistant steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To improve the oxidation properties of ferritic heat-resistant steels, an Al-bearing 9Cr-5Si-3Al ferritic heat-resistant steel was designed. We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr-5Si and 9Cr-5Si-3Al ferritic heat-resistant steels at 900 and 1000°C. The characteristics of the oxide layer were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law, with the parabolic rate constant kp of 9Cr-5Si-3Al steel being much lower than that of 9Cr-5Si steel at both 900 and 1000°C. The oxide film on the surface of the 9Cr-5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000°C. However, at oxidation temperatures of 900 and 1000°C, the oxide film of the 9Cr-5Si-3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr-5Si alloy. These results indicate that the addition of Al to the 9Cr-5Si steel can improve its high-temperature oxidation resistance, which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ## D.B., S.M. Hong, K.H. Lee, M.Y. Huh, J.Y. Suh, S.C. Lee, and W.S. Jung, High-temperature creep behavior and microstructural evolution of an 18Cr9Ni3CuNbVN austenitic stainless steel, Mater. Charact., 93(2014), p. 52.

    Article  Google Scholar 

  2. M.H. Jang, J.Y. Kang, J.H. Jang, T.H. Lee, and C. Lee, Hot deformation behavior and microstructural evolution of alumina-forming austenitic heat-resistant steels during hot compression, Mater. Charact., 123(2017), p. 207.

    Article  CAS  Google Scholar 

  3. E. Huttunen-Saarivirta, V.T. Kuokkala, and P. Pohjanne, Thermally grown oxide films and corrosion performance of ferritic stainless steels under simulated exhaust gas condensate conditions, Corros. Sci., 87(2014), p. 344.

    Article  CAS  Google Scholar 

  4. P.D. Jablonski and D.E. Alman, Oxidation resistance of novel ferritic stainless steels alloyed with titanium for SOFC interconnect applications, J. Power Sources, 180(2008), No. 1, p. 433.

    Article  CAS  Google Scholar 

  5. D. Rojas, J. Garcia, O. Prat, G. Sauthoff, and A.R. Kaysser-Pyzalla, 9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650°C, Mater. Sci. Eng. A, 528(2011), No. 15, p. 5164.

    Article  CAS  Google Scholar 

  6. L. Tan, X. Ren and T.R. Allen, Corrosion behavior of 9–12% Cr ferritic-martensitic steels in supercritical water, Corros. Sci., 52(2010), No. 4, p. 1520.

    Article  CAS  Google Scholar 

  7. X.S. Zhou, Y.C. Liu, C.X. Liu, and B.Q. Ning, Evolution of creep damage in a modified ferritic heat resistant steel with excellent short-term creep performance and its oxide layer characteristic, Mater. Sci. Eng. A, 608(2014), p. 46.

    Article  CAS  Google Scholar 

  8. Y.P. Zeng, J.D. Jia, W.H. Cai, S.Q. Dong, and Z.C. Wang, Effect of long-term service on the precipitates in P92 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 913.

    Article  CAS  Google Scholar 

  9. C. Zhang, L. Cui, Y.C. Liu, C.X. Liu, and H.J. Li, Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel, J. Mater. Sci. Technol., 34(2018), No. 5, p. 756.

    Article  Google Scholar 

  10. X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, and H.J. Li, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review, J. Mater. Sci. Technol., 31(2015), No. 3, p. 235.

    Article  Google Scholar 

  11. M.H. Jang, J. Moon, J.Y. Kang, H.Y. Ha, B.G. Choi, T.H. Lee, and C. Lee, Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels, Mater. Sci. Eng. A, 647(2015), p. 163.

    Article  CAS  Google Scholar 

  12. J. Ren, L.M. Yu, Y.C. Liu, Z.Q. Ma, C.X. Liu, H.J. Li, and J.F. Wu, Corrosion behavior of an Al added high-Cr ODS steel in supercritical water at 600°C, Appl. Surf. Sci., 480(2019), p. 969.

    Article  CAS  Google Scholar 

  13. D.N. Zou, Y.Q. Zhou, X. Zhang, W. Zhang, and Y. Han, High temperature oxidation behavior of a high Al-containing ferritic heat-resistant stainless steel, Mater. Charact., 136(2018), p. 435.

    Article  CAS  Google Scholar 

  14. Y.L. Xu, X. Zhang, L.J. Fan, J. Li, X.J. Yu, X.S. Xiao, and L.Z. Jiang, Improved oxidation resistance of 15 wt.% Cr ferritic stainless steels containing 0.08–2.45wt.% Al at 1000°C in air, Corros. Sci., 100(2015), p. 311.

    Article  CAS  Google Scholar 

  15. J. Brnic, G. Turkal, S. Krscanski, D. Lanc, M. Canadija, and M. Brcic, Information relevant for the design of structure: Ferritic-Heat resistant high chromium steel X10CrAlSi25, Mater. Des., 63(2014), p. 508.

    Article  CAS  Google Scholar 

  16. C.Z. Lu, J.Y. Li, and Z. Fang, Effects of asymmetric rolling process on ridging resistance of ultra-purified 17%Cr ferritic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 216.

    Article  CAS  Google Scholar 

  17. H. Fujikawa and S.B. Newcomb, High temperature oxidation behaviour of high al content ferritic and austenitic stainless steels with and without rare-earth element addition, Oxid. Met., 77(2012), No. 1–2, p. 85.

    Article  CAS  Google Scholar 

  18. L.L. Wei, L.Q. Chen, M.Y. Ma, H.L. Liu, and R.D.K. Misra, Oxidation behavior of ferritic stainless steels in simulated automotive exhaust gas containing 5vol.% water vapor, Mater. Chem. Phys., 205(2018), p. 508.

    Article  CAS  Google Scholar 

  19. G.R. Holcomb and D.E. Alman, The effect of manganese additions on the reactive evaporation of chromium in Ni-Cr alloys, Scripta Mater., 54(2006), No. 10, p. 1821.

    Article  CAS  Google Scholar 

  20. J. Zurek, D.J. Yong, E. Essuman, M. Hänsel, H.J. Penkalla, L. Niewolak, and W.J. Quadakkers, Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases, Mater. Sci. Eng. A, 477(2008), No. 1–2, p. 259.

    Article  Google Scholar 

  21. T.B. Gu, C.G. Yin, W.C. Ma, and G.Y. Chen, Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation, Appl. Energy, 247(2019), p. 127.

    Article  CAS  Google Scholar 

  22. Y. Li, X.G. Zhao, Y.B. Li, and X.Y. Li, Waste incineration industry and development policies in China, Waste Manage., 46(2015), p. 234.

    Article  CAS  Google Scholar 

  23. D. Mudgal, L. Ahuja, S. Singh, and S. Prakash, Corrosion behaviour of Cr3C2-NiCr coated superalloys under actual medical waste incinerator, Surf. Coat. Technol., 325(2017), p. 145.

    Article  CAS  Google Scholar 

  24. S. Swaminathan, Y.S. Lee, and D. Kim, Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects, J. Power Sources, 327(2016), p. 104.

    Article  CAS  Google Scholar 

  25. H. Ebrahimifar and M. Zandrahimi, Mn coating on AISI 430 ferritic stainless steel by pack cementation method for SOFC interconnect applications, Solid State Ionics, 183(2011), No. 1, p. 71.

    Article  CAS  Google Scholar 

  26. D. Mudgal, L. Ahuja, D. Bhatia, S. Singh, and S. Prakash, High temperature corrosion behaviour of superalloys under actual waste incinerator environment, Eng. Fail. Anal., 63(2016), p. 160.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Science & Technology Department of Sichuan Province, China (No. 2017KJT0110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-gang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Jj., Huang, Xf. & Huang, Wg. High-temperature oxidation behavior of 9Cr-5Si-3Al ferritic heat-resistant steel. Int J Miner Metall Mater 27, 1244–1250 (2020). https://doi.org/10.1007/s12613-019-1961-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1961-z

Keywords

Navigation