Skip to main content
Log in

Formation of Banded Microstructures with Rapid Intercritical Annealing of Cold-Rolled Sheet Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of heating rate in the range of 0.3 to 693 °C/s on transformations during intercritical annealing of a cold-rolled 0.12C-1.4Mn-0.02Nb steel with either a ferrite-pearlite or ferrite-spheroidized carbide microstructure were evaluated. Heating rates were selected to impart different predicted degrees of ferrite recrystallization present at the onset of austenite formation. Rapid heating minimized ferrite recrystallization with both prior microstructures and minimized pearlite spheroidization in the ferrite-pearlite condition, and austenite formation occurred preferentially in recovered ferrite regions as opposed to along recrystallized ferrite boundaries. Martensite was evenly distributed in slowly heated steels because austenite formed on recrystallized, equiaxed, ferrite boundaries. With rapid heating, austenite formed in directionally oriented recovered ferrite, which increased the degree of banding. The greatest degree of banding was found with intermediate heating rates leading to partial recrystallization, because austenite formed preferentially in the remaining recovered ferrite, which was located in bands along the rolling direction. Ferrite-spheroidized carbide microstructures had somewhat reduced martensite banding when compared to the ferrite-pearlite condition, where elongated pearlite enhanced banded austenite leading to banding in transformed microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. GLEEBLE is a trademark of Dynamic Systems Inc.

  2. VIBROMET is a trademark of MetroLaser Inc.

References

  1. ULSAB-AVC Body Structure Materials, Technical Transfer Dispatch No. 6, May 2001.

  2. O. Bouaziz, H. Zurob, and M. Huang: Steel Res. Int., 2013, vol. 84 (10), pp. 937–47.

    Google Scholar 

  3. J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3363–75.

    Article  Google Scholar 

  4. D. Mumford, G. Fourlaris, A. Smith, and N. Silk: AIST, 2008.

  5. H. Azizi-Alizamini, M. Militzer, and W.J. Poole: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1544–57.

    Article  Google Scholar 

  6. R.R. Mohanty, O.A. Girina, and N.M. Fonstein: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3680–90.

    Article  Google Scholar 

  7. P. Li, J. Li, Q. Meng, W. Hu, and D. Xu: J. Alloys Compd., 2013, vol. 578, pp. 320–27.

    Article  Google Scholar 

  8. C. Zheng and D. Raabe: Acta Mater., 2013, vol. 61 (14), pp. 5504–17.

    Article  Google Scholar 

  9. M. Kulakov, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3564–76.

    Article  Google Scholar 

  10. A. Chbihi, D. Barbier, L. Germain, A. Hazotte, and M. Gouné: J. Mater. Sci., 2014, vol. 49 (10), pp. 3608–21.

    Article  Google Scholar 

  11. D. Barbier, L. Germain, A. Hazotte, M. Gouné, and A. Chbihi: J. Mater. Sci., 2014, vol. 50 (1), pp. 374–81.

    Article  Google Scholar 

  12. B. Zhu and M. Militzer: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1073–84.

    Article  Google Scholar 

  13. L.S. Thomas: Ph.D. Thesis, Colorado School of Mines, Golden, CO, 2015.

  14. M. Mazinani and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328–39.

    Article  Google Scholar 

  15. V. Andrade-Carozzo and P.J. Jacques: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4649–54.

    Article  Google Scholar 

  16. R.H. Petrov, J.J. Sidor, W. Kaluba, and L. Kestens: Mater. Sci. Forum, 2012, vols. 715–716, pp. 661–66.

    Article  Google Scholar 

  17. D. Quidort and Y.J.M. Brechet: ISIJ Int., 2002, vol. 42 (9), pp. 1010–17.

    Article  Google Scholar 

  18. ASTM Standard E1268-01, ASTM, Philadelphia, PA, 2007, pp. 1–29.

  19. ASTM Standard E562-11, ASTM, Philadelphia, PA, 2011, pp. 1–7.

  20. J. Cahn: Acta Metall., 1956, vol. 4, pp. 572–75.

    Article  Google Scholar 

  21. K. Mukunthan and E.B. Hawbolt: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3410–23.

    Article  Google Scholar 

  22. M. Lusk and H. Jou: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 287–91.

    Article  Google Scholar 

  23. C.-S. Oh, H.N. Han, C.G. Lee, T.-H. Lee, and S.-J. Kim: Met. Mater. Int., 2004, vol. 10, pp. 399–406.

    Article  Google Scholar 

  24. A. Karmakar, M. Mandal, A. Mandal, M.D. Basiruddin S.K., S. Mukherjee, and D. Chakrabarti: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 268–81.

    Article  Google Scholar 

  25. D.O. Wilshynsky-Dresler: Ph.D. Thesis, Colorado School of Mines, Golden, CO, 1992.

Download references

Acknowledgment

The authors gratefully acknowledge the support of the Advanced Steel Processing and Products Research Center, Colorado School of Mines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larrin S. Thomas.

Additional information

Manuscript submitted January 4, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, L.S., Matlock, D.K. Formation of Banded Microstructures with Rapid Intercritical Annealing of Cold-Rolled Sheet Steel. Metall Mater Trans A 49, 4456–4473 (2018). https://doi.org/10.1007/s11661-018-4742-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4742-9

Navigation