Skip to main content
Log in

Effect of Uniaxial Pre-strain on Tensile, Work Hardening, Fracture Toughness, and Fatigue Crack Growth Rate of Titanium Alloy Ti–6Al–4V

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the effect of plastic deformation on strength, work hardening behavior, fracture toughness (FT, JIc), and fatigue crack growth rate (FCGR) of Ti–6Al–4V alloy in annealed condition was studied. Ti–6Al–4V was subjected to uniaxial pre-strain of 0.5, 1, 2, 3, 4, and 5 pct and tensile, JIc and FCGR specimens were extracted from the pre-strained material. X-ray diffraction analysis revealed peak broadening with increasing strain. Both the ultimate tensile strength (UTS) and yield strength (YS) were found to significantly increase with increasing pre-strain, whereas the ductility was retained up to 4 pct pre-strain. Beyond 4 pct pre-strain, the ductility decreased drastically. Strain hardening exponent, work hardening rate, and maximum work hardening decreased with increasing uniaxial pre-strain. This study revealed that, up to 1 pct pre-strain, the JIc values get slightly affected, beyond which they get significantly reduced. Resistance to fatigue crack propagation was significantly lowered for pre-strained specimens. No significant FCGR variations were observed among specimens subjected to different levels of pre-strains. Pre-strain increases misorientation accumulation, average misorientation and dislocation density, which resulted in an increase in both YS and UTS and a decrease in the ductility significantly. Increase in deformation heterogeneity was observed at higher pre-strains due to the evolution of deformation texture. Textured region increases plastic strain heterogeneities and alters the mechanism of crack initiation and crack propagation. Pre-strain significantly influences FT and FCGR properties of this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Company, London, 2011.

    Google Scholar 

  2. M.J. Donachie: Titanium, ASM International, Novelty, 2000.

    Book  Google Scholar 

  3. I. Polmear: Light Alloys, 4th ed. Elsevier, New York, 2005.

    Google Scholar 

  4. D. Banerjee and J.C. Williams: Acta Mater., 2013, vol. 61, pp. 844–79.

    Article  CAS  Google Scholar 

  5. D. Dawicke and J. Lewis: in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Reston, VA, 2009.

  6. Y. Yang, L. Zhan, and C. Liu: Int. J. Light Mater. Manuf., 2020, vol. 3, pp. 73–76.

    CAS  Google Scholar 

  7. H. Li, L. Zhan, M. Huang, X. Zhao, C. Zhou, and Z. Qiang: J. Alloys Compd., 2021, vol. 851, p. 156829.

    Article  CAS  Google Scholar 

  8. J. Li, S. Kim, T.M. Lee, P.E. Krajewski, H. Wang, and S.J. Hu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3905–14.

    Article  Google Scholar 

  9. G.K. Quainoo and S. Yannacopoulos: J. Mater. Sci., 2004, vol. 39, pp. 4841–47.

    Article  CAS  Google Scholar 

  10. N. Han, X. Zhang, S. Liu, B. Ke, and X. Xin: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3714–21.

    Article  Google Scholar 

  11. S. Kilic, I. Kacar, M. Sahin, F. Ozturk, and O. Erdem: Mater. Res., 2019, https://doi.org/10.1590/1980-5373-mr-2019-0006.

    Article  Google Scholar 

  12. K. Alrubaie, E. Barroso, and L. Godefroid: Int. J. Fatigue, 2006, vol. 28, pp. 934–42.

    Article  CAS  Google Scholar 

  13. S. Sivaprasad, S. Tarafder, V.R. Ranganath, and K.K. Ray: Mater. Sci. Eng. A, 2000, vol. 284, pp. 195–201.

    Article  Google Scholar 

  14. K. Amouzouvi and M. Bassim: Mater. Sci. Eng., 1983, vol. 60, pp. 1–5.

    Article  Google Scholar 

  15. Z. Yang and Z. Wang: Mater. Sci. Eng. A, 1996, vol. 210, pp. 83–93.

    Article  Google Scholar 

  16. H. Ni and Z. Wang: Mater. Sci. Eng. A, 2001, vol. 314, pp. 12–23.

    Article  Google Scholar 

  17. P.S. De, A. Kundu, and P.C. Chakraborti: Mater. Des., 2014, vol. 57, pp. 87–97.

    Article  CAS  Google Scholar 

  18. Y. Madi, Y. Shinohara, and J. Besson: Int. J. Fract., 2020, vol. 224, pp. 15–29.

    Article  Google Scholar 

  19. J. Peng, K. Li, J. Peng, J. Pei, and C. Zhou: Mater. Sci. Technol., 2018, vol. 34, pp. 547–60.

    Article  CAS  Google Scholar 

  20. H. Wu, H. Hamada, and S. Noguchi: in 19th European Conference on Fracture: Fracture Mechanics for Durability, Reliability and Safety, ECF 2012, European Conference on Fracture, ECF, 2012.

  21. J.K. Mahato, P.S. De, A. Sarkar, A. Kundu, and P.C. Chakraborti: Procedia Eng., 2014, vol. 74, pp. 368–75.

    Article  CAS  Google Scholar 

  22. J.D. Parker and B. Wilshire: Mater. Sci. Eng., 1980, vol. 43, pp. 271–80.

    Article  CAS  Google Scholar 

  23. J. Li, P. Zhang, L. Lu, F. Lv, X.-T. Miao, L. Chang, B.-B. Zhou, X.-H. He, and C.-Y. Zhou: Int. J. Fatigue, 2018, vol. 117, pp. 27–38.

    Article  CAS  Google Scholar 

  24. Z. Lincai, D. Xiaoming, Y. Wei, Z. Man, and S. Zhenya: High Temp. Mater. Process., 2018, vol. 37, pp. 487–93.

    Article  Google Scholar 

  25. M. Whittaker, P. Jones, C. Pleydell-Pearce, D. Rugg, and S. Williams: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6683–89.

    Article  Google Scholar 

  26. Z.Y. Song, Q.Y. Sun, L. Xiao, L. Liu, and J. Sun: Mater. Sci. Eng. A, 2010, vol. 527, pp. 691–98.

    Article  Google Scholar 

  27. D.B. Lanning, T. Nicholas, and G.K. Haritos: Mech. Mater., 2002, vol. 34, pp. 127–34.

    Article  Google Scholar 

  28. T. Wu, N. Wang, M. Chen, D. Zuo, L. Xie, and W. Shi: Metals (Basel), 2021, vol. 11, p. 1321.

    Article  CAS  Google Scholar 

  29. ASTM: ASTM E8: ASTM Book of Standards, ASTM, West Conshohocken, 2021, pp. 1–30.

    Google Scholar 

  30. K. Thool, A. Patra, D. Fullwood, K.V.M. Krishna, D. Srivastava, and I. Samajdar: Int. J. Plast., 2020, vol. 133, p. 102785.

    Article  CAS  Google Scholar 

  31. S.I. Wright, M.M. Nowell, and D.P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316–29.

    Article  CAS  Google Scholar 

  32. S.I. Wright, S. Suzuki, and M.M. Nowell: JOM, 2016, vol. 68, pp. 2730–36.

    Article  Google Scholar 

  33. ASTM: E1820: ASTM Book of Standards, vol. 3.01, ASTM, West Conshohocken, 2013, pp. 1–65.

    Google Scholar 

  34. ASTM: E 646: ASTM Book of Standards, vol. 03, ASTM, West Conshohocken, 2016, pp. 1–8.

    Google Scholar 

  35. ASM: Mechanical Testing and Evaluation, ASM International, Novelty, 2000.

    Google Scholar 

  36. S. Ali, R. Karunanithi, M. Prashanth, and M.A. Rahman: Mater. Today Proc., 2020, vol. 27, pp. 2390–93.

    Article  CAS  Google Scholar 

  37. T.H. Simm, P.J. Withers, and J. Quinta da Fonseca: J. Appl. Crystallogr., 2014, vol. 47, pp. 1535–51.

    Article  CAS  Google Scholar 

  38. G. Williamson and W. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  39. A.W. Bowen: Acta Metall., 1978, vol. 26, pp. 1423–33.

    Article  CAS  Google Scholar 

  40. A.A. Kaminskii and S.B. Nizhnik: Int. Appl. Mech., 1995, vol. 31, pp. 777–98.

    Article  Google Scholar 

  41. G.I.U.A.A. Kaminsky and S.B. Nizhnik: Met. Adv. Technol., 2001, vol. 23, pp. 1483–99.

    Google Scholar 

  42. R.W.K. Honeycombe: The Plastic Deformation of Metals, Edward Arnold, Maidenhead, 1984.

    Google Scholar 

  43. R.E. Jones: Eng. Fract. Mech., 1973, vol. 5, pp. 585–604.

    Article  CAS  Google Scholar 

  44. J. Chesnutt, J.C. Rhodes, and C.G. Williams: Fractography—Microscopic Cracking Processes, ASTM International, West Conshohocken, 1976.

    Google Scholar 

  45. G.R. Yoder, L.A. Cooley, and T.W. Crooker: J. Eng. Mater. Technol., 1977, vol. 99, pp. 313–18.

    Article  CAS  Google Scholar 

  46. G.R. Yoder, L.A. Cooley, and T.W. Crooker: Metall. Trans. A, 1977, vol. 8, pp. 1737–43.

    Article  Google Scholar 

  47. G.R. Yoder, L.A. Cooley, and T.W. Crooker: Eng. Fract. Mech., 1979, vol. 11, pp. 805–16.

    Article  CAS  Google Scholar 

  48. D. Eylon, J.A. Hall, C.M. Pierce, and D.L. Ruckle: Metall. Trans. A, 1976, vol. 7, pp. 1817–26.

    Article  Google Scholar 

  49. K.S. Ravichandran: Acta Metall. Mater., 1991, vol. 39, pp. 401–10.

    Article  CAS  Google Scholar 

  50. S. Shademan, V. Sinha, A.B.O. Soboyejo, and W.O. Soboyejo: Mech. Mater., 2004, vol. 36, pp. 161–75.

    Article  Google Scholar 

  51. T. Akahori, M. Niinomi, K.-I. Fukunaga, and I. Inagaki: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1949–58.

    Article  CAS  Google Scholar 

  52. P.A. Eikrem, Z.L. Zhang, and B. Nyhus: Int. J. Press. Vessel Pip., 2007, vol. 84, pp. 708–15.

    Article  CAS  Google Scholar 

  53. S. Hémery, P. Villechaise, and D. Banerjee: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4931–69.

    Article  Google Scholar 

  54. Z. Zheng, D.S. Balint, and F.P.E. Dunne: Acta Mater., 2017, vol. 127, pp. 43–53.

    Article  CAS  Google Scholar 

  55. S.K. Mishra, P. Pant, K. Narasimhan, A.D. Rollett, and I. Samajdar: Scripta Mater., 2009, vol. 61, pp. 273–76.

    Article  CAS  Google Scholar 

  56. N. Pai, A. Prakash, I. Samajdar, and A. Patra: Int. J. Plast., 2022, vol. 156, p. 103360.

    Article  CAS  Google Scholar 

  57. P.M. Souza, P.D. Hodgson, B. Rolfe, R.P. Singh, and H. Beladi: J. Alloys Compd., 2019, vol. 793, pp. 467–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are also thankful to Director, Vikram Sarabhai Space Centre (Trivandrum, India), for the kind permission to publish this article.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Saravanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, K., Manikandan, P., Jalaja, K. et al. Effect of Uniaxial Pre-strain on Tensile, Work Hardening, Fracture Toughness, and Fatigue Crack Growth Rate of Titanium Alloy Ti–6Al–4V. Metall Mater Trans A 54, 3603–3619 (2023). https://doi.org/10.1007/s11661-023-07117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07117-6

Navigation