Skip to main content
Log in

Stress-Relaxation Behavior of Magnesium-3Gadolinium-2Calcium-Based Alloys at Elevated Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Based on previously published work on binary Mg alloys by Abaspour et al. and on the magnesium (Mg)-6gadolinium (Gd)-2zinc (Zn)-0.6zirconium (Zr) (wt pct) alloy reported by Nie et al., a number of new lower-cost Mg-3Gd-2calcium (Ca) (wt pct)-based creep-resistant magnesium alloys were developed by replacing part of the Gd with Ca. After solution treatment at 793 K (520 °C), the Ca-containing alloys exhibited an increased strength and a reduced stress relaxation at 453 K (180 °C) compared with the Mg-6Gd-2Zn-0.6Zr (wt pct) alloy. This work indicates that the replacement of Gd with Ca is a promising approach to develop lower-cost Mg alloys with an improved creep resistance. The results support the hypothesis that the short-range order of solutes governs the creep behavior of magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.A. Luo: JMA, 2013, vol. 1, pp. 2-22.

    Google Scholar 

  2. M. Gupta and N.M.L. Sharon: John Wiley & Sons, Hoboken, 2011.

    Book  Google Scholar 

  3. Mordike B.L., Kainer K.U. (1998) Werkstoff-Informationsgesellschaft, Frankfurt.

  4. A. Luo and M.O. Pekguleryuz: J. Mater. Sci., 1994, vol. 29, pp. 5259-71.

    Article  Google Scholar 

  5. J.F. Nie, X. Gao and S.M. Zhu: Scr. Mater., 2005, vol. 53, pp. 1049-1053.

    Article  Google Scholar 

  6. B.L. Mordike: Mater. Sci. Eng. A, 2002, vol. 324 (1-2), pp. 103-112.

    Article  Google Scholar 

  7. M.O. Pekguleryuz and M. Celikin: Int. Mater. Rev., 2010, vol. 55, pp. 197-217.

    Article  Google Scholar 

  8. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37-45.

    Article  Google Scholar 

  9. P. Vostry and B. Smola: Phys. Status. Solidi. A, 1999, vol. 175, pp. 491-500.

    Article  Google Scholar 

  10. I.A. Anyanwu, S. Kamado and Y. Kojima: Mater. Trans., 2001, vol. 42, pp. 1206-1211.

    Article  Google Scholar 

  11. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie and W.J. Ding: J. Alloys Compd., 2007, vol. 427, pp. 316–323.

    Article  Google Scholar 

  12. Y. Gao, Q. Wang, J. Gub, Y. Zhao and Y. Tong: Mater. Sci. Eng. A, 2007, vol. 459, pp. 117–123.

    Article  Google Scholar 

  13. I. Stulikova, B. Smoloa and B.L. Mordike: Phys. Status. Solidi A, 2005, vol. 190, pp. 5–7.

    Article  Google Scholar 

  14. S. Abaspour and C.H. Caceres: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1313-1321.

    Article  Google Scholar 

  15. S. Abaspour, V. Zambelli, M. Dargusch, C.H. Caceres: Mater. Sci. Eng. A, 2016, vol. 673, pp. 114-121.

    Article  Google Scholar 

  16. S. Abaspour and C.H. Caceres: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5972-5988.

    Article  Google Scholar 

  17. A. A. Nayeb-Hashemi and J. B. Clark: Bull. Alloy Phase Diagrams, 1987, vol. 8 (1), pp 58-65.

    Article  Google Scholar 

  18. G. Nayyeri, R. Mahmudi: Mater. Sci. Eng. A, 2010, vol. 527 (7-8), pp. 2087-2098.

    Article  Google Scholar 

  19. R. Ninomiya, T. Ojiro and K. Kubota: Acta Metall. Mater., 1995, vol. 43, pp. 669–674.

    Article  Google Scholar 

  20. J.L. Zhang, Y.L. Liu, J. Liu, Y.C. Yu and S.B. Wang: J. Alloys Compd., 2016, vol. 663, pp. 610-616.

    Article  Google Scholar 

  21. S.M. Zhu and J.F. Nie: Scr. Mater., 2004, vol. 50, pp. 51-55.

    Article  Google Scholar 

  22. S. Gavars, S.M. Zhu, J.F. Nie, M.A. Gibson and M.A. Easton: Mater. Sci. Eng. A, 2016, vol. 675, pp. 65-75.

    Article  Google Scholar 

  23. J.F. Nie, N.C. Wilson, Y.M. Zhu and Z. Xu: Acta. Mater., 2016, vol. 106, pp. 260-271.

    Article  Google Scholar 

  24. M. Nishijima and K. Hiraga: Mater. Trans., 2011, vol. 52, pp. 1009-1015.

    Article  Google Scholar 

  25. K. Saito and K. Hiraga: Mater. Trans., 2011, vol. 52, pp. 1860-1867.

    Article  Google Scholar 

  26. Y. Matsuoka, K. Matsuda, K. Watanabe, J. Nakamura, W. Lefebvre, D. Nakagawa and S. Saikawa, S. Ikeno: Mater. Trans., 2014, vol. 55, pp. 1051-1057.

    Article  Google Scholar 

  27. J.F. Nie and B.C. Muddle: Scr. Mater., 1997, vol. 37, pp. 1475-1481.

    Article  Google Scholar 

  28. J.F. Nie, K. Oh-Ishi, X. Gao and K. Hono: Acta Mater., 2008, vol. 56, pp. 6061–6076.

    Article  Google Scholar 

  29. Y.C. Lee, A.K. Dahle and D.H. StJohn: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2895-2906.

    Article  Google Scholar 

  30. X.D. Wang, W.B. Du, K. Liu, Z.H. Wang and S.B. Li: J. Alloys Comp., 2012, vol. 522, pp. 78– 84.

    Article  Google Scholar 

  31. M. Liu, Q. Wang, Z. Liu, G. Yuan, G. Wu, Y. Zhu and W. Ding: J. Mater. Sci. Lett., 2002, vol. 21, pp. 1281–1283.

    Article  Google Scholar 

  32. S.M. Zhu, M.A. Gibson, M.A. Easton and J.F. Nie: Scr. Mater., 2010, vol. 63, pp. 698-703.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to the UQ CIEF fund for their funding support. We thank the Edanz Group (www.edanzediting.com/ac) for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Xing Zhang.

Additional information

Manuscript submitted January 29, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, N., Tan, Q., Jiang, B. et al. Stress-Relaxation Behavior of Magnesium-3Gadolinium-2Calcium-Based Alloys at Elevated Temperatures. Metall Mater Trans A 48, 5710–5716 (2017). https://doi.org/10.1007/s11661-017-4324-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4324-2

Navigation