Skip to main content

Advertisement

Log in

A Precipitate-Strengthening Model Based on Crystallographic Anisotropy, Stress-Induced Orientation, and Dislocation of Stress-Aged Al-Cu-Mg Single Crystals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We investigate the relationship between inhomogeneously distributed S precipitates and hardness of stress-aged single-crystal Al-Cu-Mg. First, the effect of crystallographic anisotropy is considered and modeled from the results of free-stress aged single-crystal Al-1.2Cu-0.5Mg with (\( 1\bar{1}8 \)), (\( \bar{1}\bar{2}5 \)), (356), and (319) plane orientations. Effect of crystallographic anisotropy depends on the angle between the plane orientation of the single crystal and {012} habit planes of the S precipitates. Second, the effects of the magnitude of the applied stress and direction on the S-laths’ size and distribution are considered. As the applied stress-induced S-laths inhomogeneously distribute during aging, the effect of the single-crystal’s orientation on the distribution of S-laths is modeled. The results show that a single crystal near (111) plane orientation has the lowest stress-orienting effect. Finally, at higher applied stresses, such as 50 MPa, the S precipitates disperse more homogeneously due to the influence of the dislocations. Inhibiting the effect of dislocation depends on the angle between the plane orientation of the single crystal and the {111} dislocation slide planes. A precipitate-strengthening model of the stress-aged Al-Cu-Mg alloys is established based on crystallographic anisotropy, stress-orienting precipitates, and inhibiting the effect of dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T.F. Morgeneyer, J. Besson, H. Proudhon, M.J. Starink, and I. Sinclair: Acta Mater., 2009, vol. 57, pp. 3902–15.

    Article  Google Scholar 

  2. K.K. Cho, Y.H. Chung, C.W. Lee, S.I. Kwun, and M.C. Shin: Scripta Mater., 1999, vol. 40, pp. 651–7.

    Article  Google Scholar 

  3. A.K. Vasudevan, M.A. Przystupa, and W.G. Fricke Jr.: Scripta Mater., 1990, vol. 24, pp. 1429–34.

    Article  Google Scholar 

  4. M. Toyoda, H. Toda, H. Ikuno, T. Kobayashi, M. Kobayashi, and K. Matsuda: Scripta Mater., 2007, vol. 56, pp. 377–80.

    Article  Google Scholar 

  5. N.J. Kim and E.W. Lee: Acta Metall. Mater., 1993, vol. 41, pp. 941–8.

    Article  Google Scholar 

  6. W.F. Hosford and S.P. Agrawal: Metall. Trans. A, 1975, vol. 6, pp. 487–91.

    Article  Google Scholar 

  7. T. Eto, A. Sato, and T. Mori: Acta Mater., 1978, vol. 26, pp. 499–508.

    Article  Google Scholar 

  8. B. Skrotzki, G.J. Shiflet, and E.A. Starke Jr.: Metall. Trans. A, 1996, vol. 27, pp. 3431–44.

    Article  Google Scholar 

  9. A.W. Zhu and E.A. Starke Jr.: Acta Mater., 2001, vol. 49, pp. 2285–95.

    Article  Google Scholar 

  10. H. Hargarter, M.T. Lyttle, and E.A. Starke Jr.: Mater. Sci. Eng. A, 1998, vol. 257, pp. 87–99.

    Article  Google Scholar 

  11. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller: Mater. Sci. Eng. A, 2000, vol. 280, pp. 102–7.

    Article  Google Scholar 

  12. L.H. Zhan, J.G. Lin, and T.A. Dean: Int. J. Mach. Tools Manuf., 2011, vol. 51, pp. 1–17.

    Article  Google Scholar 

  13. R.A. Jeshvaghani, H. Zohdi, H.R. Shahverdi, M. Bozorg, and S.M.M. Hadavi: Mater. Charact., 2012, vol. 73, pp. 8–15.

    Article  Google Scholar 

  14. R.A. Jeshvaghani, H.R. Shahverdi, and S.M.M. Hadavi: Mater. Sci. Eng. A, 2012, vol. 552, pp. 172–8.

    Article  Google Scholar 

  15. J. Zhang, Y.L. Deng, and X.M. Zhang: Mater. Sci. Eng. A, 2013, vol. 563, pp. 8–15.

    Article  Google Scholar 

  16. H.Y. Li, W. Kang, and X.C. Lu: J. Alloy Compd., 2015, vol. 640, pp. 210–8.

    Article  Google Scholar 

  17. M.R. Louthan: Trans. TMS-AIME, 1963, vol. 227, pp. 1166–70.

    Google Scholar 

  18. M.R. Louthan and C.L. Angerman: Trans. TMS-AIME, 1966, vol. 236, pp. 221–2.

    Google Scholar 

  19. X.Q. Ma, S.Q. Shi, C.H. Woo, and L.Q. Chen: Comput. Mater. Sci., 2002, vol. 23, pp. 83–90.

    Article  Google Scholar 

  20. Y. Nakada, W.C. Leslie, and T.P. Churay: Trans. ASM, 1967, vol. 60, pp. 223–7.

    Google Scholar 

  21. A.W. Zhu and E.A. Starke: Acta Mater., 1999, vol. 47, pp. 3263–9.

    Article  Google Scholar 

  22. A.W. Zhu, J. Chen, and E.A. Starke: Acta Mater., 2000, vol. 48, pp. 2239–46.

    Article  Google Scholar 

  23. A.W. Zhu and E.A. Starke: Acta Mater., 2001, vol. 49, pp. 3063–9.

    Article  Google Scholar 

  24. E.A. Starke Jr. and J.T. Staley: Prog. Aerosp. Sci., 1996, vol. 32, pp. 131–72.

    Article  Google Scholar 

  25. J.F. Nie, B.C. Muddle, and I.J. Polmear: Mater. Sci. Forum, 1996, vol. 217–222, pp. 1257–62.

    Article  Google Scholar 

  26. J.F. Nie and B.C. Muddle: J. Phase Equilib., 1998, vol. 19, pp. 543–51.

    Article  Google Scholar 

  27. J.F. Nie and B.C. Muddle: Acta Mater., 2008, vol. 56, pp. 3490–501.

    Article  Google Scholar 

  28. X.B. Guo, Y.L. Deng, J. Zhang, and X.M. Zhang: Mater. Sci. Eng. A, 2015, vol. 644, pp. 358–64.

    Article  Google Scholar 

  29. X.B. Guo, Y.L. Deng, J. Zhang, and X.M. Zhang: Mater. Charact., 2015, vol. 107, pp. 197–201.

    Article  Google Scholar 

  30. H.P.E.A. Westgren: Ark. Kemi Mineral. Geol., 1943, vol. 16B, p. 13.

    Google Scholar 

  31. L.F. Mondolfo: Aluminum Alloys—Structure and Properties, Butterworth, London, 1976.

    Google Scholar 

  32. S.W. Wang and M.J. Starink: Int. Mater. Rev., 2005, vol. 50, pp. 193–215.

    Article  Google Scholar 

  33. E. Schmid and W. Boas: Plasticity of Crystals, F. A. Hughes and Co. Ltd., London, 1950.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Chinese National Science Foundation (Project No. 51375503), the 973 Program Foundation of China (Grant No. 2012CB619505), the Major State Research Program of China (Project No. 2016YFB0300901), and the Major Science and Technology Project of Guangxi Province in China (Project No. 1412001-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlai Deng.

Additional information

Manuscript submitted December 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Zhang, Y., Zhang, J. et al. A Precipitate-Strengthening Model Based on Crystallographic Anisotropy, Stress-Induced Orientation, and Dislocation of Stress-Aged Al-Cu-Mg Single Crystals. Metall Mater Trans A 48, 4857–4870 (2017). https://doi.org/10.1007/s11661-017-4257-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4257-9

Navigation