Skip to main content
Log in

The formation of new (Al, Zn)3Zr precipitates in an Al–Zn–Mg–Cu aluminum alloy after aging treatment and their response to dynamic compression

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 08 December 2022

This article has been updated

Abstract

This study mainly focuses on the newly developed (Al, Zn)3Zr precipitates through double aging treatment in an Al–Zn–Mg–Cu alloy (Al alloy) and their response to dynamic compression. The results show that the strength of the Al alloy after aging treatment (393 K for 8 h + 433 K for 10 h) is increased with an increasing strain rate from 1.0 × 10−3 to 3.0 × 103 s−1 assisted by the strain hardening rate effect. The microstructures of Al alloy after the double aging treatment and dynamic compression at \(\sim\) 3.0 × 103 s−1 contain novel (Al, Zn)3Zr precipitate with LI2 ordered and tetragonal structures. The small inter-particle spacing of precipitates after double aging, solute diffusion during the aging treatment, and dynamic compression lead to the overlapping of the different precipitates. For instance, the overlapping of (Al, Zn)3Zr and θ′ precipitates is observed. The overlapped (Al, Zn)3Zr contains Cu solutes, while the θ′ precipitate contains Zr solutes assisted by solute diffusion through dislocations and the increase in temperature during the compression. Besides, the number and size of the platelet precipitates are also increased after the dynamic compression compared to the double aging treatment Al alloy. In this research, the newly observed (Al, Zn)3Zr precipitate after double aging treatment, and post-high strain rate compression is suitable for successfully tailoring the precipitation of Al–Zn–Mg–Cu alloy and achieving optimum properties in the near future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig. 6
Fig.7
Fig.8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

Change history

References

  1. Khan M, Wang Y, Malik A, Nazeer F, Yasin G, Khan W, Ahmad T, Zhang H. Microstructure characterization of 7055-T6, 6061-T6511 and 7A52-T6 Al alloys subjected to ballistic impact against heavy tungsten alloy projectile. Arch Civ Mech Eng. 2019;19(4):1484–96.

    Article  Google Scholar 

  2. Berg L, Gjønnes J, Hansen V, Li X, Knutson-Wedel M, Schryvers D, Wallenberg L. GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 2001;49(17):3443–51.

    Article  ADS  CAS  Google Scholar 

  3. Morere B, Shahani R, Maurice C, Driver J. The influence of Al3Zr dispersoids on the recrystallization of hot-deformed AA 7010 alloys. Metall Mater Trans A. 2001;32(3):625–32.

    Article  Google Scholar 

  4. Hansen V, Gjønnes J, Skjervold S. Effect of predeformation and preaging at room temperature in Al–Zn–Mg–(Cu, Zr) alloys. Mater Sci Eng, A. 2001;303(1–2):226–33.

    Google Scholar 

  5. Robson J. A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium. Acta Mater. 2004;52(6):1409–21.

    Article  ADS  CAS  Google Scholar 

  6. Deschamps A, Bréchet Y. Influence of quench and heating rates on the ageing response of an Al–Zn–Mg–(Zr) alloy. Mater Sci Eng, A. 1998;251(1–2):200–7.

    Article  Google Scholar 

  7. Robson J, Prangnell P. Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys. Acta Mater. 2001;49(4):599–613.

    Article  ADS  CAS  Google Scholar 

  8. Zhao H, Chen Y, Gault B, Makineni SK, Ponge D, Raabe D. (Al, Zn) 3Zr dispersoids assisted η′ precipitation in an Al–Zn–Mg–Cu–Zr alloy. Materialia. 2020;10: 100641.

    Article  CAS  Google Scholar 

  9. Afifi MA, Wang YC, Langdon TG. Effect of dynamic plastic deformation on the microstructure and mechanical properties of an Al–Zn–Mg alloy. Mater Sci Eng, A. 2020;784: 139287.

    Article  CAS  Google Scholar 

  10. Varas D, López-Puente J, Zaera R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact. Int J Impact Eng. 2009;36(1):81–91.

    Article  Google Scholar 

  11. Mirihanage W, Robson J, Mishra S, Hidalgo-Manrique P, Da Fonseca JQ, Daniel C, Prangnell P, Michalik S, Magdysyuk O, Connolley T. Direct observation of the dynamic evolution of precipitates in aluminium alloy 7021 at high strain rates via high energy synchrotron X-rays. Acta Mater. 2021;205: 116532.

    Article  CAS  Google Scholar 

  12. Khan MA, Wang Y, Yasin G, Nazeer F, Malik A, Ahmad T, Khan WQ, Nguyen TA, Zhang H, Afifi MA. Adiabatic shear band localization in an Al–Zn–Mg–Cu alloy under high strain rate compression. J Market Res. 2020;9(3):3977–83.

    CAS  Google Scholar 

  13. Bobel A, Kim K, Wolverton C, Walker M, Olson GB. Equilibrium composition variation of Q-phase precipitates in aluminum alloys. Acta Mater. 2017;138:150–60.

    Article  ADS  CAS  Google Scholar 

  14. Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B. Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys. Acta Mater. 2010;58(1):248–60.

    Article  ADS  CAS  Google Scholar 

  15. Khan MA, Wang Y, Afifi MA, Malik A, Nazeer F, Yasin G, Jiawei B, Zhang H. Microstructure and mechanical properties of an Al–Zn–Cu–Mg alloy processed by hot forming processes followed by heat treatments. Mater Charact. 2019;157: 109901.

    Article  CAS  Google Scholar 

  16. Khan MA, Wang Y, Hamza M, Yasin G, Tabish M, Feng C, Khan WQ, Ahmad T, Liao W-B, Afifi MA. Precipitation behaviour in an Al–Zn–Mg–Cu alloy subjected to high strain rate compression tests. Mater Charact. 2021;180: 111398.

    Article  CAS  Google Scholar 

  17. Khan MA, Wang Y, Yasin G, Nazeer F, Malik A, Khan WQ, Ahmad T, Zhang H, Afifi MA. The effect of strain rates on the microstructure and the mechanical properties of an over-aged Al–Zn–Mg–Cu alloy. Mater Charact. 2020;167: 110472.

    Article  CAS  Google Scholar 

  18. Afifi MA, Wang YC, Cheng X, Li S, Langdon TG. Strain rate dependence of compressive behavior in an Al–Zn–Mg alloy processed by ECAP. J Alloy Compd. 2019;791:1079–87.

    Article  CAS  Google Scholar 

  19. Wu X, Li L, Liu W, Li S, Zhang L, He H. Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting. Mater Sci Eng, A. 2018;732:91–8.

    Article  CAS  Google Scholar 

  20. Pereira PHR, Wang YC, Huang Y, Langdon TG. Influence of grain size on the flow properties of an Al–Mg–Sc alloy over seven orders of magnitude of strain rate. Mater Sci Eng, A. 2017;685:367–76.

    Article  CAS  Google Scholar 

  21. Kverneland A, Hansen V, Vincent R, Gjønnes K, Gjønnes J. Structure analysis of embedded nano-sized particles by precession electron diffraction. η′-precipitate in an Al–Zn–Mg alloy as example. Ultramicroscopy. 2006;106(6):492–502.

    Article  CAS  PubMed  Google Scholar 

  22. Khan MA, Wang Y, Cheng H, Yasin G, Malik A, Nazeer F, Ahmad T, Kamran M, Afifi MA. Microstructure evolution of an artificially aged Al–Zn–Mg–Cu alloy subjected to soft-and hard-steel core projectiles. J Market Res. 2020;9(5):11980–92.

    CAS  Google Scholar 

  23. Wang S, Starink M. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev. 2005;50(4):193–215.

    Article  Google Scholar 

  24. Cassell A, Robson J, Race C, Eggeman A, Hashimoto T, Besel M. Dispersoid composition in zirconium containing Al–Zn–Mg–Cu (AA7010) aluminium alloy. Acta Mater. 2019;169:135–46.

    Article  ADS  CAS  Google Scholar 

  25. Robson J, Prangnell P. Modelling Al3Zr dispersoid precipitation in multicomponent aluminium alloys. Mater Sci Eng, A. 2003;352(1–2):240–50.

    Article  Google Scholar 

  26. Nie JF, Muddle BC. Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates. Acta Mater. 2008;56(14):3490–501.

    Article  ADS  CAS  Google Scholar 

  27. Adlakha I, Garg P, Solanki K. Revealing the atomistic nature of dislocation-precipitate interactions in Al–Cu alloys. J Alloy Compd. 2019;797:325–33.

    Article  CAS  Google Scholar 

  28. Byrne J, Fine M-E, Kelly A. Precipitate hardening in an aluminium-copper alloy. Phil Mag. 1961;6(69):1119–45.

    Article  ADS  CAS  Google Scholar 

  29. Pandey S, Gangopadhyay D, Suryanarayana C. Metastable phases in vapour-deposited Al–Zr thin films. Thin Solid Films. 1987;146(3):273–82.

    Article  ADS  CAS  Google Scholar 

  30. Wilson C, Sams D. The crystal structure of Zr2Al. Acta Crystallogr A. 1961;14(1):71–2.

    Article  CAS  Google Scholar 

  31. Wang F, Gong Y, Du Y, Song M. Microstructures and mechanical properties of an Al–Zn–Mg–Cu alloy processed by two-step aging treatment. J Mater Eng Perform. 2020;29(7):4404–11.

    Article  CAS  Google Scholar 

  32. Afifi MA, Wang YC, Pereira PHR, Huang Y, Wang Y, Cheng X, Li S, Langdon TG. Mechanical properties of an Al–Zn–Mg alloy processed by ECAP and heat treatments. J Alloy Compd. 2018;769:631–9.

    Article  CAS  Google Scholar 

  33. Sha G, Cerezo A. Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater. 2004;52(15):4503–16.

    Article  ADS  CAS  Google Scholar 

  34. Hull D, Bacon DJ. Introduction to dislocations. Elsevier; 2011.

    Google Scholar 

  35. Gibbs JW. The collected works of J. Willard Gibbs. Yale Univ. Press; 1948.

    Google Scholar 

  36. Blavette D, Cadel E, Fraczkiewicz A, Menand A. Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science. 1999;286(5448):2317–9.

    Article  CAS  PubMed  Google Scholar 

  37. Huang J, Meyer M, Pontikis V. Is pipe diffusion in metals vacancy controlled? A molecular dynamics study of an edge dislocation in copper. Phys Rev Lett. 1989;63(6):628.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Rabier J, Puls M. Atomistic calculations of point-defect interaction and migration energies in the core of an edge dislocation in NaCl. Philos Mag A. 1989;59(3):533–46.

    Article  ADS  CAS  Google Scholar 

  39. Legros M, Dehm G, Arzt E, Balk TJ. Observation of giant diffusivity along dislocation cores. Science. 2008;319(5870):1646–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Wang Z, Beyerlein I, LeSar R. Dislocation motion in high strain-rate deformation. Phil Mag. 2007;87(16):2263–79.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2021A1515012278 and 2022A1515010288), and the National Natural Science Foundation of China (Grant No. 51801128). Wei-Bing Liao would like to acknowledge the technical support from the Instrumental Analysis Center of Shenzhen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangwei Wang, Mohamed A. Afifi or Wei-Bing Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to add Wei-Bing Liao as an additional corresponding author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 613 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Wang, Y., Afifi, M.A. et al. The formation of new (Al, Zn)3Zr precipitates in an Al–Zn–Mg–Cu aluminum alloy after aging treatment and their response to dynamic compression. Archiv.Civ.Mech.Eng 23, 33 (2023). https://doi.org/10.1007/s43452-022-00571-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00571-w

Keywords

Navigation