Skip to main content
Log in

Modeling of the Recrystallization and Austenite Formation Overlapping in Cold-Rolled Dual-Phase Steels During Intercritical Treatments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Austenite formation kinetics of a DP1000 steel was investigated from a ferrite–pearlite microstructure (either fully recrystallized or cold-rolled) during typical industrial annealing cycles by means of dilatometry and optical microscopy after interrupted heat treatments. A marked acceleration of the kinetics was found when deformed ferrite grains were present in the microstructure just before austenite formation. After having described the austenite formation kinetics without recrystallization and the recrystallization kinetics of the steel without austenite formation by simple JMAK laws, a mixture law was used to analyze the kinetics of the cold-rolled steel for which austenite formation and recrystallization may occur simultaneously. In the case where the interaction between these two phenomena is strong, three main points were highlighted: (i) the heating rate greatly influences the austenite formation kinetics, as it affects the degree of recrystallization at the austenite start temperature; (ii) recrystallization inhibition above a critical austenite fraction accelerates the austenite formation kinetics; (iii) the austenite fractions obtained after a 1 hour holding deviate from the local equilibrium fractions given by Thermo-Calc, contrary to the case of the recrystallized steel. This latter result could be due to the fact that the dislocations of the deformed ferrite matrix could promote the diffusion of the alloying elements of the steel and accelerate austenite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1] R.O. Rocha, T.M.F. Melo, E.V. Pereloma, D.B. Santos: Mater. Sci. Eng. A, 2005, vol. 391, pp. 296-304.

    Article  Google Scholar 

  2. [2] H. Azizi-Alizamini, M. Militzer, W.J. Poole: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1544‑1557.

    Article  Google Scholar 

  3. [3] D.Z. Yang, E.L. Brown, D.K. Matlock, G. Krauss: Metall. Trans. A, 1985, vol. 16 pp. 1385–1392.

    Article  Google Scholar 

  4. [4] M. Kulakov, W.J. Poole, M. Militzer: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3564‑3576.

    Article  Google Scholar 

  5. [5] E.A. Chojnowski, W.J. McG. Tegart: Metal Science Journal, 1968, vol. 2, pp.14-18.

    Article  Google Scholar 

  6. [6] D.F. Lupton, D.H. Warrington: Metal Science Journal, 1972, vol. 6, pp. 200-204.

    Article  Google Scholar 

  7. [7] P. Li, J. Li, Q. Meng,W. Hu, D. Xu: Journal of Alloys and Compounds, 2013, vol. 578, pp. 320‑327.

    Article  Google Scholar 

  8. [8] G.R. Speich, V.A. Demarest, R.L. Miller: Metall. Trans. A, 1981, vol. 12, pp. 1419–1428.

    Article  Google Scholar 

  9. [9] J. Huang, W.J. Poole, M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3363–3375.

    Article  Google Scholar 

  10. [10] T. Ogawa, N. Maruyama, N. Sugiura, N. Yoshinaga: ISIJ inter., 2010, vol. 50, pp. 469–475.

    Article  Google Scholar 

  11. [11] R.R. Mohanty, O.A. Girina, N.M. Fonstein: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3680‑3690.

    Article  Google Scholar 

  12. [12] A. Chbihi, D. Barbier, L. Germain, A. Hazotte, M. Gouné: J. Mater. Sci., 2014, vol. 49, pp.3608-3621.

    Article  Google Scholar 

  13. T. Ogawa: International Journal of Mechanical and Materials Engineering, 2015.

  14. [14] D. Barbier, L. Germain, A. Hazotte, M. Gouné, A. Chbihi: J. Mater. Sci., 2015, vol. 50, pp. 374‑381.

    Article  Google Scholar 

  15. [15] C. Zheng, D. Raabe: Acta Mater., 2013, vol. 61, pp. 5504-5517.

    Article  Google Scholar 

  16. [16] J. Rudnizki, B. Bottger, U. Prahl, W. Bleck: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2516-2525.

    Article  Google Scholar 

  17. [17] M. Kulakov, W.J. Poole, M. Militzer: ISIJ Inter., 2014, vol. 54, pp. 2627-2636.

    Article  Google Scholar 

  18. https://www.gleeble.com/products/gleeble-3500.html

  19. https://imagej.net

  20. [20] J.O. Andersson, T. Helander, L. Hoglund, P.F. Shi, B. Sundman: Computational tools for materials science. Calphad, 2002, vol. 26, pp. 273-312.

    Google Scholar 

  21. Thermo-Calc software TCFE8 Steels/Fe-alloys database version 8 (accessed 23 July 2016).

  22. [22] Q. Lai, M. Gouné, A. Pierlade, T. Pardoen, P. Jacques, O. Bouaziz, Y. Bréchet: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3375-3386.

    Article  Google Scholar 

  23. [23] A. Hultgren: Trans. Am. Soc. Metal, 1947, vol. 39, pp. 915-1005.

    Google Scholar 

  24. [24] R. Wei, N. Enomoto, R. Hadian, H.S. Zurob, G.R. Purdy: Acta Mater., 2013, vol. 61, pp. 697-707.

    Article  Google Scholar 

  25. [25] H. Chen, X. Xu, W. Xu, S. van der Zwaag: Metall. Mater. Trans. A, 2014, vol. 45, pp.1675-1679.

    Article  Google Scholar 

  26. [26] H.S. Zurob, C.R. Hutchinson, Y. Bréchet, H. Seyedrezai, G.R. Purdy: Acta Mater., 2009, vol. 57, pp. 2781-2792.

    Article  Google Scholar 

  27. [27] M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. Van der Zwaag, H. Zurob: Mater. Sci. Eng., 2015, vol. 92, pp. 1‑38.

    Article  Google Scholar 

  28. [28] T. Ogawa, K. Sato, H. Dannoshita, K. Maruoka, K. Ushioda: ISIJ inter., 2016, vol. 5, pp. 2290-2297.

    Article  Google Scholar 

  29. [29] M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103.

    Article  Google Scholar 

  30. [30] W.A. Johnson, R.F. Mehl: Trans. Am. Inst. Min. Metall. Pet. Eng., 1939, vol. 135, pp. 416.

    Google Scholar 

  31. A. Kolmogorov: Izv. Acad. Sci. USSR, Math. Ser., 1937, vol. 1, p. 355.

  32. [32] H. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702-1706.

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out in collaboration with the Fives Keods company which is attaching great importance to physical modeling in order to improve the efficiency of his line driving softwares. Authors thank this company for the financial support. M. Gouné and M. Militzer are also gratefully acknowledged for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ollat.

Additional information

Manuscript submitted March 15, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ollat, M., Massardier, V., Fabregue, D. et al. Modeling of the Recrystallization and Austenite Formation Overlapping in Cold-Rolled Dual-Phase Steels During Intercritical Treatments. Metall Mater Trans A 48, 4486–4499 (2017). https://doi.org/10.1007/s11661-017-4231-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4231-6

Navigation