Skip to main content
Log in

First-principles investigation of perfect and diffuse antiphase boundaries in HCP-based Ti-Al alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

First-principles thermodynamic models based on the cluster expansion formalism, Monte Carlo simulations, and quantum-mechanical total energy calculations are employed to compute short-range-order (SRO) parameters and diffuse-antiphase-boundary energies in hcp-based α-Ti-Al alloys. Our calculations unambiguously reveal a substantial amount of SRO is present in α-Ti-6 Al and that, at typical processing temperatures and concentrations, the diffuse antiphase boundaries (DAPB) energies associated with a single dislocation slip can reach 25 mJ/m2. We find very little anisotropy between the energies of DAPBs lying in the basal and prism planes. Perfect antiphase boundaries in DO19-ordered Ti3Al are also investigated and their interfacial energies, interfacial stresses, and local displacements are calculated from first principles through direct supercell calculations. Our results are discussed in light of mechanical property measurements and deformation microstructure studies in α-Ti-Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Blackburn and J.C. Williams: Trans. ASM, 1969, vol. 62, pp. 398–99.

    CAS  Google Scholar 

  2. J.Y. Lim, J. McMahon, D.P. Pope and J.C. Williams: Metall. Trans. A, 1976, vol. 7A, pp. 139–44.

    CAS  Google Scholar 

  3. T. Neeraj: Ph.D. Thesis, The Ohio State University, 2000.

  4. H.R. Ogden, D.J. Maykuth, W.L. Finley, and R.I. Jaffee: Trans. AIME, 1953, vol. 197, pp. 267–72.

    Google Scholar 

  5. H.W. Rosenberg and W.D. Nix: Metall. Trans., 1973, vol. 4, pp. 1333–38.

    CAS  Google Scholar 

  6. H. Conrad: Scripta Metall., 1973, vol. 7, pp. 509–12.

    Article  CAS  Google Scholar 

  7. T. Sakai and M.E. Fine: Scripta Metall., 1974, vol. 8, pp. 541–44.

    Article  CAS  Google Scholar 

  8. T. Neeraj, J.L. Robertson, and M.J. Mills: unpublished research.

  9. J.C. Fisher: Acta Metall., 1954, vol. 2, pp. 9–10.

    Article  Google Scholar 

  10. T. Mohri, D. de Fontaine, and J.M. Sanchez: Metall. Trans. A, 1986, vol. 17A, pp. 189–94.

    CAS  Google Scholar 

  11. T. Mohri, T. Tsutsumi, O. Sasaki, and K. Watanabe: Metall. Trans. A, 1990, vol. 21A, pp. 3165–69.

    CAS  Google Scholar 

  12. P. Schwander, B. Schönfeld, and G. Kostorz: Phys. Status Solidi (b), 1992, vol. 172, pp. 73–85.

    CAS  Google Scholar 

  13. J. Plessing, C. Achmus, H. Neuhauser, B. Schönfeld, and G. Kostorz: Z. Metallkd., 1997, vol. 88, pp. 630–35.

    CAS  Google Scholar 

  14. J.B. Cohen and M.E. Fine: Acta Metall., 1963, vol. 11, pp. 1106–115.

    Article  CAS  Google Scholar 

  15. T. Neeraj, D.-H. Hou, G.S. Daehn, and M.J. Mills: Acta Mater., 2000, vol. 48, pp. 1225–38.

    Article  CAS  Google Scholar 

  16. F. Prinz, H.P. Karnthlaer, and H.O.K. Kirchner: Acta Metall., 1981, vol. 29, pp. 1029–36.

    Article  CAS  Google Scholar 

  17. H. Neuhaüser, O.B. Arkan, and H.H. Potthoff: Mater. Sci. Eng., 1986, vol. 81, pp. 201–09.

    Article  Google Scholar 

  18. N. Clement, D. Caillard, and J.L. Martin: Acta Metall., 1984, vol. 32, pp. 961–75.

    Article  CAS  Google Scholar 

  19. J. Olfe and H. Neuhäuser: Phys. Status Solidi (a), 1988, vol. 109, pp. 149–60.

    Article  CAS  Google Scholar 

  20. M. Jouiad, N. Clement, and A. Coujou: Phil. Mag. A, 1998, vol. 77, pp. 689–99.

    Article  CAS  Google Scholar 

  21. M. Jouiad, F. Pettinari, N. Clement, and A. Coujou: Phil. Mag. A, 1999, vol. 79, pp. 2591–602.

    Article  CAS  Google Scholar 

  22. P.A. Flinn: Acta Metall., 1958, vol. 6, pp. 631–35.

    Article  CAS  Google Scholar 

  23. J.B. Cohen and M.E. Fine: J. Phys. Radium, 1962, vol. 23, pp. 749–62.

    CAS  Google Scholar 

  24. R.O. Williams: Acta Metall., 1970, vol. 18, pp. 457–66.

    Article  CAS  Google Scholar 

  25. A.R. Büchner and W. Pitsch: Z. Metallkd., 1985, vol. 76, pp. 651–56.

    Google Scholar 

  26. G. Inden, S. Bruns, and H. Ackermann: Phil. Mag. A, 1986, vol. 53, pp. 87–100.

    CAS  Google Scholar 

  27. W. Pitsch: Scripta Metall., 1974, vol. 8, pp. 813–19.

    Article  Google Scholar 

  28. W. Pitsch: Scripta Metall., 1975, vol. 9, pp. 1059–62.

    Article  CAS  Google Scholar 

  29. V. Gerold and J. Kern: Acta Metall., 1987, vol. 35, pp. 393–99.

    Article  CAS  Google Scholar 

  30. D. de Fontaine: Solid State Phys., 1994, vol. 47, pp. 33–176.

    Article  CAS  Google Scholar 

  31. A. Zunger: in NATO ASi on Statics and Dynamics of Alloy Phase Transformation, P.E. Turchi and A. Gonis, eds., Plenum Press, New York, NY, 1994, vol. 319, pp. 361–405.

    Google Scholar 

  32. G. Kresse and J. Furthmüller: Vienna Ab-initio Simulation Package (VASP), Vienna University, Vienna, Austria, 2001.

    Google Scholar 

  33. G. Kresse and J. Furthmüller: Phys. Rev. B, 1996, vol. 54, pp. 11169–11186.

    Article  CAS  Google Scholar 

  34. G. Kresse and J. Furthmüller: Comp. Mater. Sci., 1996, vol. 6, pp. 15–50.

    Article  CAS  Google Scholar 

  35. D. Vanderbilt: Phys. Rev. B, 1990, vol. 41, pp. 7892–95.

    Article  Google Scholar 

  36. C.L. Fu, J. Zou, and M.H. Yoo: Scripta Metall. Mater., 1995, vol. 33, pp. 885–91.

    Article  CAS  Google Scholar 

  37. M. Legros, A. Couret, and D. Caillard: Phil. Mag. A, 1996, vol. 73, pp. 61–80.

    CAS  Google Scholar 

  38. M. Asta and A.A. Quong: Phil. Mag. Lett., 1997, vol. 76, pp. 331–39.

    Article  CAS  Google Scholar 

  39. M.H.F. Sluiter, Y. Hashi, and Y. Kawazoe: Comput. Master Sci., 1999, vol. 14, pp. 283–90.

    Article  CAS  Google Scholar 

  40. J.M. Sanchez, F. Ducastelle, and D. Gratias: Physica, 1984, vol. 128A, pp. 334–50.

    Google Scholar 

  41. A. van de Walle and G. Ceder: MIT Ab-initio Phase Stability (MAPS) Code, available by contacting avdw@alum.mit.edu.

  42. K. Binder and D.W. Heermann: Monte Carlo Simulation in Statistical Physics, Springer-Verlag, New York, NY, 1988.

    Google Scholar 

  43. C. Wolverton, V. Ozoliņš, and A. Zunger: J. Phys.: Condens. Matter, 2000, vol. 12, pp. 2749–68.

    Article  CAS  Google Scholar 

  44. M. Shimono and H. Onodera: Phys. Rev. B, 2000, vol. 61, pp. 14271–14274.

    Article  CAS  Google Scholar 

  45. B.E. Warren: X-Ray Diffraction, Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

  46. H. Roelofs, B. Schönfeld, G. Kostorz, and W. Buhrer: Phys. Status Solidi (b), 1995, vol. 187, pp. 31–42.

    CAS  Google Scholar 

  47. U.R. Kattner, J.-C. Lin, and Y.A. Chang: Metall. Trans. A, 1992, vol. 23A, pp. 2081–90.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Defect Properties and Mechanical Behavior of HCP Metals and Alloys” at the TMS Annual Meeting, February 11–15, 2001, in New Orleans, Louisiana, under the auspices of the following ASM committees: Materials Science Critical Technology Sector, Structural Materials Division, Electronic, Magnetic & Photonic Materials Division, Chemistry & Physics of Materials Committee, Joint Nuclear Materials Committee, and Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Walle, A., Asta, M. First-principles investigation of perfect and diffuse antiphase boundaries in HCP-based Ti-Al alloys. Metall Mater Trans A 33, 735–741 (2002). https://doi.org/10.1007/s11661-002-0139-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0139-9

Keywords

Navigation