Skip to main content
Log in

Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three different approaches for considering the effect of Mn on the austenite-ferrite interface migration in an Fe-0.1C-0.5Mn alloy have been coupled with a phase field model (PFM). In the first approach (PFM-I), only long-range C diffusion is considered while Mn is assumed to be immobile during the phase transformations. Both long-range C and Mn diffusions are considered in the second approach (PFM-II). In the third approach (PFM-III), long-range C diffusion is considered in combination with the Gibbs energy dissipation due to Mn diffusion inside the interface instead of solving for long-range diffusion of Mn. The three PFM approaches are first benchmarked with isothermal austenite-to-ferrite transformation at 1058.15 K (785 °C) before considering cyclic phase transformations. It is found that PFM-II can predict the stagnant stage and growth retardation experimentally observed during cycling transformations, whereas PFM-III can only replicate the stagnant stage but not the growth retardation and PFM-I predicts neither the stagnant stage nor the growth retardation. The results of this study suggest a significant role of Mn redistribution near the interface on reducing transformation rates, which should, therefore, be considered in future simulations of austenite-ferrite transformations in steels, particularly at temperatures in the intercritical range and above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Hillert: The growth of ferrite, bainite and martensite. Internal report, Royal Institute of Technology, 1960.

  2. Aaronson HI, Enomoto M, Lee JK: Mechanisms of Diffusional Phase Transformations in Metals and Alloys, Taylor & Francis Group, New York, 2010.

    Book  Google Scholar 

  3. Pereloma E, Edmonds D: Phase Transformation in Steels, Woodhead Publishing, Cambridge, 2012.

    Book  Google Scholar 

  4. Purdy G, Ågren J, Borgenstam A, Bréchet Y, Enomoto M, Furuhara T, Gamsjäger E, Gouné M, Hillert M, Hutchinson C, Militzer M, Zurob H: Metall Mater Trans A, 2011, vol 42A, pp. 3703-3718

    Article  Google Scholar 

  5. Gouné M, Danoix F, Ågren J, Bréchet Y, Hutchinson C, Militzer M, Purdy G, van der Zwaag S, Zurob H: Mater. Sci. Eng. R, 2015, vol. 92, pp. 1-38.

    Article  Google Scholar 

  6. M. Hillert: Introduction to paraequilibrium, Internal report, Swedish Institute of Metals Research, Stockholm, 1953.

  7. [7] Hultgren A: Trans. ASM., 1947, vol. 39, pp. 915-1005.

    Google Scholar 

  8. [8] Zener C: J Appl Phys, 1949, vol. 20, pp. 950-953.

    Article  Google Scholar 

  9. [9] Kirkaldy JS: Can J Phys, 1958, vol.36, pp. 907-916.

    Article  Google Scholar 

  10. [10] Coates DE: Metallurgical Transactions, 1972, vol. 3, pp. 1203-1212.

    Article  Google Scholar 

  11. [11] Purdy GR, Bréchet Y: Acta Metall, 1995, vol. 43, pp. 3763-3774.

    Article  Google Scholar 

  12. [12] Enomoto M: Acta Mater, 1999, vol. 47, pp. 3533-3540.

    Article  Google Scholar 

  13. [13] Odqvist J, Hillert M, Ågren J: Acta Mater, 2002, vol. 50, pp. 3211-3225.

    Article  Google Scholar 

  14. [14] Zurob H, Panahi D, Hutchinson C, Bréchet Y, Purdy G: Metall. Mater. Trans. A, 2013, vol. 44, pp.3456-3471.

    Article  Google Scholar 

  15. [15] Chen H, Borgenstam A, Odqvist J, Zuazo I, Ågren J, van der Zwaag S: Acta Mater, 2013, vol. 61, pp 4512-4523.

    Article  Google Scholar 

  16. [16] Chen H, van der Zwaag S: Acta Mater, 2014, vol.72, pp. 1-12.

    Article  Google Scholar 

  17. [17] Cahn JW: Acta Metall, 1962, vol.10, pp. 789-798.

    Article  Google Scholar 

  18. [18] Hillert M, Sundman B: Acta Metall, 1976, vol. 24, pp. 731-743.

    Article  Google Scholar 

  19. [19] Hillert M, Odqvist J, Ågren J: Scr Mater, 2001, vol. 45, pp.221-227.

    Article  Google Scholar 

  20. [20] Hillert M: Acta Mater, 2004, vol. 52, pp. 5289-5293.

    Article  Google Scholar 

  21. [21] Oi K, Lux C, Purdy GR: Acta Mater, 2000, vol.48, pp. 2147-2155.

    Article  Google Scholar 

  22. [22] Li ZD, Yang ZG, Zhang C, Liu ZQ: Mater Sci Eng A, 2010, vol. 527, pp.4406-4411.

    Article  Google Scholar 

  23. [23] Chen H, Xu W, Mohamed G, van der Zwaag S: Phil Mag lett, 2012, vol. 92, pp. 547-555.

    Article  Google Scholar 

  24. [24] Liu ZQ, Miyamoto G, Yang ZG, Furuhara T: Acta Mater, 2013, vol. 61, pp. 3120-3129.

    Article  Google Scholar 

  25. [25] Beche A, Zurob HS, Hutchinson CR: Mater Trans A, 2007, vol. 38A, pp. 2950-2955.

    Article  Google Scholar 

  26. [26] Zurob HS, Hutchinson CR, Beche A, Purdy GR, Bréchet Y: Acta Mater, 2008, vol. 56, pp.2203-2211.

    Article  Google Scholar 

  27. [27] Zurob HS, Hutchinson CR, Bréchet Y, Seyedrezai H, Purdy GR: Acta Mater, 2009, vol. 57, pp.2781–2792.

    Article  Google Scholar 

  28. [28] Hutchinson CR, Fuchsmann A, Zurob HS, Bréchet Y: Scripta Mater, 2004, vol. 50, pp. 285-289.

    Article  Google Scholar 

  29. [29] Chen H, van der Zwaag S: Comp Mater Sci, 2010, vol. 49, pp.801-813.

    Article  Google Scholar 

  30. 30. Chen H, Gouné M, van der Zwaag S: Compd. Mater. Sci. 2012, vol. 55, pp. 34-43.

    Article  Google Scholar 

  31. [31] Chen H, Kuziak R, van der Zwaag S: Metall Mater Trans A, 2013, vol. 44, pp.5617-5621.

    Article  Google Scholar 

  32. [32] Chen H, van der Zwaag S: Acta Mater, 2013, vol. 61, pp.1338-1349.

    Article  Google Scholar 

  33. [33] Chen H, Gamsjäger E, Schider S, van der Zwaag S: Acta Mater, 2013, vol. 61, pp. 2414-2424.

    Article  Google Scholar 

  34. [34] Chen H, Appolaire B, van der Zwaag S: Acta Mater, 2011, vol. 59, pp. 6751-6760.

    Article  Google Scholar 

  35. [35] Gamsjäger E, Chen H, van der Zwaag S: Comp Mater Sci, 2014, vol. 83, pp. 92-100.

    Article  Google Scholar 

  36. [36] Huang CJ, Browne DJ, McFadden S: Acta Mater, 2006, vol. 54, pp.11-21.

    Article  Google Scholar 

  37. [37] Mecozzi MG, Sietsma J, van Der Zwaag S, Apel M, Schaffnit P, Steinbach I: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2327-2340.

    Article  Google Scholar 

  38. [38] Mecozzi MG, Militzer M, Sietsma J, van der Zwaag S: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1237-1247.

    Article  Google Scholar 

  39. [39] Mecozzi MG, Sietsma J, van der Zwaag S: Acta Mater, 2006, vol. 54, pp. 1431-1440.

    Article  Google Scholar 

  40. [40] Militzer M: Current opinion in solid state and materials science, 2011, vol. 15, pp.106-115.

    Article  Google Scholar 

  41. [41] Militzer M, Mecozzi MG, Sietsma J, van der Zwaag S: Acta Mater, 2006, vol. 54, pp.3961-3972.

    Article  Google Scholar 

  42. [42] Steinbach I, Pezzolla F: Phys. Nonlinear Phenom, 1999, vol.134, pp.385-393.

    Article  Google Scholar 

  43. [43] Eiken J, Böttger B, Steinbach I: Phys. Rev. E, 2006, vol. 73, pp. 6.

    Article  Google Scholar 

  44. [44] Mecozzi M, Eiken J, Apel M, Sietsma J: Compt Mater Sci, 2011, vol. 50, pp. 1846-1853.

    Article  Google Scholar 

  45. [45] Sietsma J, van der Zwaag S: Acta Mater, 2004, vol. 52, pp. 4143-4152.

    Article  Google Scholar 

  46. [46] Chen H, van der Zwaag S: J Mater Sci, 2011, vol. 46, pp. 1328-1336.

    Article  Google Scholar 

  47. [47] Liu Z, Yang ZG, Li Z, Liu Z, Zhang C: Acta Metal Sinica, 2010, vol. 46, pp. 390-395.

    Article  Google Scholar 

  48. [48] Chen H, Liu YC, Yan ZS, Li YL, Zhang LF: Applied Physics A, 2010, vol. 98, pp. 211-217.

    Article  Google Scholar 

  49. [49] Zhu B, Chen H, Militzer M: Compt Mater Sci, 2015, vol. 108, pp. 333-341.

    Article  Google Scholar 

  50. [50] Krielaart GP, Sietsma J, van der Zwaag S: Mater Sci Eng A, 1997, vol. 237, pp. 216-223.

    Article  Google Scholar 

  51. [51] Zhu B, Militzer M: Modelling Simul. Mater Sci Eng, 2012, vol. 20, pp. 085011.

    Article  Google Scholar 

  52. [52] Zhu B, Militzer M: Mat. Met. Trans A, 2015, vol. 46, pp. 1073-1084.

    Article  Google Scholar 

  53. MICRESS, Software developed in ACCESS is an independent research center associated with the Technical University of Aachen.

  54. [54] Chen H, Zhu K, Zhao L, van der Zwaag S: Acta Mater, 2013, vol. 61, pp. 5458-5468.

    Article  Google Scholar 

  55. [55] Jin H, Elfimov I, Militzer M: J App Phys, 2014, vol. 115, pp. 093506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

Manuscript submitted December 11, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhu, B. & Militzer, M. Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys. Metall Mater Trans A 47, 3873–3881 (2016). https://doi.org/10.1007/s11661-016-3595-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3595-3

Keywords

Navigation