Skip to main content
Log in

Experimental Measurements for Numerical Simulation of Macrosegregation in a 36-Ton Steel Ingot

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to cognize the macrosegregation formation with solidification conditions, a 36-ton steel ingot has been experimentally investigated. Temperature variations of fourteen specified positions, for both the mold and ingot, were monitored to acquire the thermal conditions during solidification. Calibrated heat transfer coefficients between the ingot and mold were determined based on the temperature measurements and the empirical formula. Besides, concentration distributions of both carbon and sulfur in the ingot longitudinal section were mapped by 1800 drilled samples. Macrosegregation patterns were obtained, and notable negative segregations along the side walls of hot-top as well as typical segregation characteristics were presented in the maps. Segregation extent of sulfur was greater than that of carbon, and the segregated sulfur was relevant to the segregated carbon in a certain extent on statistical analysis with a standard correlation coefficient r = 0.68872. Finally, a two-phase multiscale multicomponent solidification model was preliminarily utilized to predict the species segregation. General good agreements are exhibited for the comparisons between the prediction and measurement of concentration profiles of carbon and sulfur in ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Beckermann: Int. Mater. Rev., 2002, vol. 47, pp. 243-61.

    Article  Google Scholar 

  2. E. J. Pickering: ISIJ Int., 2013, vol. 53, pp. 935-949.

    Article  Google Scholar 

  3. D. Z. Li, X. Q. Chen, P. X. Fu, X. P. Ma, H. W. Liu, Y. Chen, Y. F. Cao, Y. K. Luan, and Y. Y. Li: Nat. Commun., 2014, vol. 5, pp.5572. doi:10.1038/ncomms6572.

    Article  Google Scholar 

  4. M. C. Flemings and G. E. Nereo: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1449-61.

    Google Scholar 

  5. W. D. Bennon and F. P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161-70.

    Article  Google Scholar 

  6. C. Beckermann and R. Viskanta: Physicochem. Hydrodyn., 1995, vol. 10, pp. 195-213.

    Google Scholar 

  7. J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22B, pp. 349-61.

    Article  Google Scholar 

  8. C. Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754-64.

    Article  Google Scholar 

  9. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1613-31.

    Article  Google Scholar 

  10. M. Bellet, H. Combeau, Y. Fautrelle, D. Gobin, M. Rady, E. Arquis, O. Budenkova, B. Dussoubs, Y. Duterrail, A. Kumar, C. A. Gandin, B. Goyeau, S. Mosbah, and M. Založnik: Int. J. Therm. Sci., 2009, vol. 48, pp. 2013–16.

    Article  Google Scholar 

  11. G. Lesoult: Mater. Sci. Eng. A, 2005, vols. 413-414A, pp. 19–29.

    Article  Google Scholar 

  12. J. Li, M. Wu, A. Ludwig, and A. Kharicha: Int. J. Heat Mass Transfer, 2014, vol. 72, pp. 668–79.

    Article  Google Scholar 

  13. S. Hans, P.E. Richy, B. Lusson, and A. Grellier: in 1st Multidisciplinary Congress on Materials, Tours, France, 2002, AF16005.

  14. H. Combeau, B. Rabia, S. Charmond, S. Hans, and P.E. Richy: in 2nd Multidisciplinary Conference on Materials, Dijon, France, 2006.

  15. H. Combeau, M. Založnik, S. Hans, and P. E. Richy: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 289–304.

    Article  Google Scholar 

  16. J.Pickering, C.Chhesman, S.Al-Bermani, M. Holland, P.Davies, and J. Talamantes-silva: Metall. Mater. Trans. B, 2015, vol.46B, pp.1860-1874.

    Article  Google Scholar 

  17. P. Machovcak, A. Opler, Z. Carbol, A. Trefil, K. Merta, J. Zaoral, M. Tkadleckova, and K. Michalek: Arch. Mater. Sci. Eng., 2012, vol. 58, pp. 22–27.

    Google Scholar 

  18. K. Kajikawa, S. Suzuki, F. Takahashi, S. Yamamoto, T. Suzuki, S. Ueda, T. Shibata, and H. Yoshida: in 1st International Conference on Ingot Casting, Rolling and Forging, Aachen, Germany, 2012.

  19. W. S. Li, H. F. Shen, X. Zhang and B. C. Liu: Metal. Mater. Trans. B, 2014, vol. 45B, pp. 464–71.

    Article  Google Scholar 

  20. W. Tu, H. Shen, and B. Liu: ISIJ Int., 2014, vol. 54, pp. 351–55.

    Article  Google Scholar 

  21. Z. Duan, H. Shen, and B. Liu: in The 14th Modelling of Casting, Welding and Advanced Solidification Process, Hyogo, Japan, 2015, p. 012048.

  22. M. C. Schneider and C. Beckermann: Metal. Mater. Trans. A, 1995, vol. 9A, pp. 2373–88.

    Article  Google Scholar 

  23. ProCAST software, version 2011, https://www.esi-group.com/software-services/virtual-manufacturing/casting/procast-quikcast.

  24. W.S. Li, B.Z. Shen, H.F. Shen, and B.C. Liu: in The 69th World Foundry Congress, Hangzhou, P.R. China, 2010, pp. 0537–40.

  25. Z. Liu, Y. Zhao, Y. Zhang, H. L. Zhao, Y. T. Yang: J. Iron.Steel.Res, 1993, vol.5, pp. 23-32.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2011CB012900) and the National Science and Technology Major Project the Ministry of Science and Technology of China (No. 2012ZX04012011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houfa Shen.

Additional information

Manuscript submitted July 27, 2015.

Appendix

Appendix

The concentration solute transport equations[19,20] for the liquid and solid phase is improved as follows:

$$ \frac{\partial }{\partial t}\left( {g_{\text{s}} \rho_{\text{s}} C_{\text{s,1}} } \right) + \nabla \cdot \left( {g_{\text{s}} \rho_{\text{s}} \varvec{u}_{\text{s}} C_{\text{s,1}} } \right) = \frac{{S_{\text{V}} \rho_{\text{s}} D_{\text{s,1}} }}{{\delta_{\text{s}} }}(C_{\text{s,1}}^{ * } - C_{\text{s,1}} ) + C_{\text{s,1}}^{ * } \varGamma_{\text{s}} $$
(A1)
$$ \frac{\partial }{\partial t}\left( {g_{\text{l}} \rho_{\text{l}} C_{\text{l,1}} } \right) + \nabla \cdot \left( {g_{\text{l}} \rho_{\text{l}} \varvec{u}_{\text{l}} C_{\text{l,1}} } \right) = \frac{{S_{\text{V}} \rho_{\text{l}} D_{\text{l,1}} }}{{\delta_{\text{l}} }}(C_{\text{l,1}}^{ * } - C_{\text{l,1}} ) - C_{\text{l,1}}^{ * } \varGamma_{\text{s}}. $$
(A2)

According to the interface solute balance, it can be derived as

$$ \frac{{S_{\text{V}} \rho_{\text{s}} D_{\text{s,1}} }}{{\delta_{\text{s,1}} }}(C_{\text{s,1}}^{ * } - C_{\text{s,1}} ) + C_{\text{s,1}}^{ * } \varGamma_{\text{s}} + \frac{{S_{\text{V}} \rho_{\text{l}} D_{\text{l,1}} }}{{\delta_{\text{l,1}} }}(C_{\text{l,1}}^{ * } - C_{\text{l, 1}} ) - C_{\text{l, 1}}^{ * } \varGamma_{\text{s}} = 0. $$
(A3)

Considering the fact that diffusion in solid is negligible compared with the diffusion in liquid (D s,1 ≪ D l,1), it can be simplified as

$$ \begin{array}{*{20}l} {C_{{{\text{s}},1}}^{*} \varGamma_{\text{s}} + \frac{{S_{\text{V}} \rho_{\text{l}} D_{{{\text{l}},1}} }}{{\delta_{{{\text{l}},1}} }}(C_{{{\text{l}},1}}^{*} - C_{{{\text{l}},1}} ) - C_{{{\text{l}},1}}^{*} \varGamma_{\text{s}} = 0} \hfill \\ { \Rightarrow \varGamma_{\text{s}} = \frac{{S_{\text{V}} \rho_{\text{l}} D_{{{\text{l}},1}} }}{{\delta_{{{\text{l}},1}} }} \cdot \frac{{(C_{{{\text{l}},1}}^{*} - C_{{{\text{l}},1}} )}}{{C_{{{\text{l}},1}}^{*} (1 - k_{1} )}}} \hfill \\ \end{array}. $$
(A4)

Similarly, the interfacial phase change rate can also be expressed as

$$ \varGamma_{\text{s}} = \frac{{S_{\text{V}} \rho_{\text{l}} D_{\text{l,2}} }}{{\delta_{\text{l,2}} }} \cdot \frac{{(C_{\text{l,2}}^{ * } - C_{\text{l, 2}} )}}{{C_{\text{l,2}}^{ * } (1 - k_{2} )}}. $$
(A5)

Combining Eqs. [A4] and [A5], the constraint between the interface solute element evolutions is

$$ \frac{{D_{\text{l,1}} }}{{\delta_{\text{l,1}} }} \cdot \frac{{(C_{\text{l,1}}^{ * } - C_{\text{l, 1}} )}}{{C_{\text{l,1}}^{ * } (1 - k_{1} )}} = \frac{{D_{\text{l,2}} }}{{\delta_{\text{l,2}} }} \cdot \frac{{(C_{\text{l,2}}^{ * } - C_{\text{l, 2}} )}}{{C_{\text{l,2}}^{ * } (1 - k_{2} )}}\; $$
(A6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z., Tu, W., Shen, B. et al. Experimental Measurements for Numerical Simulation of Macrosegregation in a 36-Ton Steel Ingot. Metall Mater Trans A 47, 3597–3606 (2016). https://doi.org/10.1007/s11661-016-3531-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3531-6

Keywords

Navigation