Skip to main content
Log in

Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic–Martensitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of martensite fraction (f α) on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α to the faults near austenite–martensite (A–M) boundaries at high f α. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α was attributed to the uniform partitioning of the carbon stored at A–M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Weiß, H. Gutte, J. Mola, Contributions of ε and α′ TRIP Effects to the Strength and Ductility of AISI 304 (X5CrNi18-10) Austenitic Stainless Steel, Metall. Mater. Trans. A. (2015) 4 1–11. doi:10.1007/s11661-014-2726-y.

    Google Scholar 

  2. A.S. Hamada, L.P. Karjalainen, R.D.K. Misra, J. Talonen, Contribution of deformation mechanisms to strength and ductility in two Cr–Mn grade austenitic stainless steels, Mater. Sci. Eng. A. 559 (2013) 336–344. doi:10.1016/j.msea.2012.08.108.

    Article  Google Scholar 

  3. J. Mola, M. Wendler, A. Weiß, B. Reichel, G. Wolf, B.C. De Cooman, Segregation-Induced Enhancement of Low-Temperature Tensile Ductility in a Cast High-Nitrogen Austenitic Stainless Steel Exhibiting Deformation-Induced α′ Martensite Formation, Metall. Mater. Trans. A. 46 (2015) 1450–1454. doi:10.1007/s11661-015-2782-y.

    Article  Google Scholar 

  4. M. Pozuelo, J.E. Wittig, J.A. Jiménez, G. Frommeyer, Enhanced mechanical properties of a novel high-nitrogen Cr-Mn-Ni-Si austenitic stainless steel via TWIP/TRIP effects, Metall. Mater. Trans. A. 40 (2009) 1826–1834.

    Article  Google Scholar 

  5. O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application, Int. J. Plast. 16 (2000) 1391–1409. doi:10.1016/S0749-6419(00)00015-2.

    Article  Google Scholar 

  6. O. Bouaziz, H. Zurob, B. Chehab, J.D. Embury, S. Allain, M. Huang, Effect of chemical composition on work hardening of Fe‐Mn‐C TWIP steels, Mater. Sci. Technol. 27 (2011) 707–709. doi:10.1179/026708309X12535382371852.

    Article  Google Scholar 

  7. B.C. De Cooman, K. Chin, J. Kim: in New trends and Developments in Automotive System Engineering, M. Chiaberge, ed., 2011. http://www.intechopen.com/books/new-trends-and-developments-in-automotive-system-engineering/high-mn-twip-steels-for-automotive-applications. Accessed 14 March 2013.

  8. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, B. Bai, Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: The great potential of ultrafine filmy retained austenite, Acta Mater. 76 (2014) 425–433. doi:10.1016/j.actamat.2014.05.055.

    Article  Google Scholar 

  9. C. Garcia-Mateo, F. Caballero, J. Chao, C. Capdevila, C. Garcia de Andres, Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels, J. Mater. Sci. 44 (2009) 4617–4624. doi:10.1007/s10853-009-3704-4.

    Article  Google Scholar 

  10. P.J. Jacques, Transformation-induced plasticity for high strength formable steels, Curr. Opin. Solid State Mater. Sci. 8 (2004) 259–265. doi:10.1016/j.cossms.2004.09.006.

    Article  Google Scholar 

  11. G.K. Tirumalasetty, M.A. van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, H.W. Zandbergen, Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel, Acta Mater. 60 (2012) 1311–1321. doi:10.1016/j.actamat.2011.11.026.

    Article  Google Scholar 

  12. J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater. 51 (2003) 2611–2622. doi:10.1016/S1359-6454(03)00059-4.

    Article  Google Scholar 

  13. J.G. Speer, E. De Moor, A.J. Clarke, Critical Assessment 7: Quenching and partitioning, Mater. Sci. Technol. 31 (2014) 3–9. doi:10.1179/1743284714Y.0000000628.

    Article  Google Scholar 

  14. E. De Moor, J.G. Speer, D.K. Matlock, J.-H. Kwak, S.-B. Lee, Quenching and Partitioning of CMnSi Steels Containing Elevated Manganese Levels, Steel Res. Int. 83 (2012) 322–327. doi:10.1002/srin.201100318.

    Article  Google Scholar 

  15. E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, J.G. Speer, Effect of Retained Austenite Stabilized via Quench and Partitioning on the Strain Hardening of Martensitic Steels, Metall. Mater. Trans. A. 39 (2008) 2586–2595. doi:10.1007/s11661-008-9609-z.

    Article  Google Scholar 

  16. J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. De Cooman, D.V. Edmonds, Analysis of microstructure evolution in quenching and partitioning automotive sheet steel, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 42 (2011) 3591–3601.

    Article  Google Scholar 

  17. A. Jahn, A. Kovalev, A. Weiß, S. Wolf, L. Krüger, P.R. Scheller, Temperature Depending Influence of the Martensite Formation on the Mechanical Properties of High-Alloyed Cr-Mn-Ni As-Cast Steels, Steel Res. Int. 82 (2011) 39–44. doi:10.1002/srin.201000228.

    Article  Google Scholar 

  18. A. Kovalev, A. Jahn, A. Weiß, P.R. Scheller, Characterization of the TRIP/TWIP effect in austenitic stainless steels using Stress-Temperature-Transformation (STT) and Deformation-Temperature-Transformation (DTT) Diagrams, Steel Res. Int. 82 (2011) 45–50. doi:10.1002/srin.201000245.

    Article  Google Scholar 

  19. A. Kovalev, A. Jahn, A. Weiß, S. Wolf, P.R. Scheller, Stress-Temperature-Transformation and Deformation-Temperature-Transformation Diagrams for an Austenitic CrMnNi as-cast Steel, Steel Res. Int. 82 (2011) 1101–1107. doi:10.1002/srin.201100065.

    Article  Google Scholar 

  20. A. Kovalev, A. Jahn, A. Weiß, S. Wolf, P.R. Scheller, STT and DTT Diagrams of Austenitic Cr–Mn–Ni As-Cast Steels and Crucial Thermodynamic Aspects of γ → α′ Transformation, Steel Res. Int. 83 (2012) 576–583. doi:10.1002/srin.201100267.

    Article  Google Scholar 

  21. M. Wendler, A. Weiß, L. Krüger, J. Mola, A. Franke, A. Kovalev, et al., Effect of Manganese on Microstructure and Mechanical Properties of Cast High Alloyed CrMnNi-N Steels, Adv. Eng. Mater. 15 (2013) 558–565. doi:10.1002/adem.201200318.

    Article  Google Scholar 

  22. A.S. Hamada, L.P. Karjalainen, M.C. Somani, The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels, Mater. Sci. Eng. A. 467 (2007) 114–124. doi:10.1016/j.msea.2007.02.074.

    Article  Google Scholar 

  23. S. Curtze, V.-T. Kuokkala, Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate, Acta Mater. 58 (2010) 5129–5141. doi:10.1016/j.actamat.2010.05.049.

    Article  Google Scholar 

  24. G.B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metall. Trans. A. 6 (1975) 791–795. doi:10.1007/BF02672301.

    Article  Google Scholar 

  25. G.B. Olson, M. Cohen, A mechanism for the strain-induced nucleation of martensitic transformations, J. Common Met. 28 (1972) 107–118. doi:10.1016/0022-5088(72)90173-7.

    Article  Google Scholar 

  26. T.-H. Lee, H.-Y. Ha, J.-Y. Kang, J. Moon, C.-H. Lee, S.-J. Park, An intersecting-shear model for strain-induced martensitic transformation, Acta Mater. 61 (2013) 7399–7410. doi:10.1016/j.actamat.2013.08.046.

    Article  Google Scholar 

  27. S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature, Metall. Mater. Trans. A. (2014) 47 1–10. doi:10.1007/s11661-014-2684-4.

    Google Scholar 

  28. T. Song, B.C. De Cooman, Martensite Nucleation at Grain Boundaries Containing Intrinsic Grain Boundary Dislocations, ISIJ Int. 54 (2014) 2394–2403. doi:10.2355/isijinternational.54.2394.

    Article  Google Scholar 

  29. S. Kajiwara, Roles of dislocations and grain boundaries in martensite nucleation, Metall. Mater. Trans. A. 17 (1986) 1693–1702. doi:10.1007/BF02817268.

    Article  Google Scholar 

  30. J.C. Fisher, J.H. Hollomon, D. Turnbull, Kinetics of the Austenite-Martensite Transformation.pdf, Met. Trans. 185 (1949) 691–700.

    Google Scholar 

  31. E.G. Ramachandran, C. Dasarathy, Athermal stabilization of austenite, Acta Metall. 8 (1960) 666–667. doi:10.1016/0001-6160(60)90025-0.

    Article  Google Scholar 

  32. E. Priestner, S.G. Glover, A re-examination of the growth of martensite in a 1.5 per cent carbon, 5 per cent nickel steel, Acta Metall. 5 (1957) 536–538. doi:10.1016/0001-6160(57)90094-9.

    Article  Google Scholar 

  33. E.G. Ramachandran, C. Dasarathy, Hydrogen and austenite stabilization, Acta Metall. 8 (1960) 729–730. doi:10.1016/0001-6160(60)90205-4.

    Article  Google Scholar 

  34. Y. Liu, J. Pietikäinen, Zig-zag martensite formed at low temperatures, Scr. Metall. Mater. 27 (1992) 887–892. doi:10.1016/0956-716X(92)90411-7.

    Article  Google Scholar 

  35. T. Ko, B. Edmondson, Thermal stabilization of austenite in nickel steels, Acta Metall. 1 (1953) 466–467. doi:10.1016/0001-6160(53)90135-7.

    Article  Google Scholar 

  36. M.E. Blanter, B.G. Serebrennikova, The nature of thermal stabilization of austenite, Met. Sci. Heat Treat. 14 (1972) 567–570. doi:10.1007/BF00647864.

    Article  Google Scholar 

  37. Yunoshin Imai, Masao Izumiyama, Sub-Zero Treatment of Quenched Steel. II : Effect of the Addition of Small Amount of Elements on the Stabilization of Retained Austenite, Sci. Rep. Res. Inst. Tohoku Univ. Ser Phys. Chem. Metall. 11 (1959) 393–400.

    Google Scholar 

  38. M. IZUMIYAMA, Kinetics of Transformation of Aged Retained-Austenite into Martensite, Sci Rep RITU. 14 (1962) 11–33.

    Google Scholar 

  39. J. Pietikäinen, Thermal Stabilization of Austenite in High Nickel-Carbon Steels, J. Phys. Colloq. 43 (1982) C4–479–C4–484. doi:10.1051/jphyscol:1982474.

    Article  Google Scholar 

  40. B. Edmondson, Thermal stabilization of austenite in a 10% Ni, 1% C steel, Acta Metall. 5 (1957) 208–215. doi:10.1016/0001-6160(57)90167-0.

    Article  Google Scholar 

  41. Yunoshin Imai, Masao Izumiyama, Sub-Zero Treatment of Quenched Steel. I : On the Stabilization of Retained Austenite, Sci. Rep. Res. Inst. Tohoku Univ. Ser Phys. Chem. Metall. 10 (1958) 414–425.

    Google Scholar 

  42. K.R. Kinsman, J.C. Shyne, The thermal stabilization of austenite, Acta Metall. 14 (1966) 1063–1072. doi:10.1016/0001-6160(66)90194-5.

    Article  Google Scholar 

  43. Z.L. Xie, Y. Liu, H. Hänninen, Stabilization of retained austenite due to partial martensitic transformations, Acta Metall. Mater. 42 (1994) 4117–4133. doi:10.1016/0956-7151(94)90189-9.

    Article  Google Scholar 

  44. W.J. Harris, M. Cohen, Stabilization of the Austenite-martensite Transformation, Met. Technol. AIME 180 (1948) 447–470.

    Google Scholar 

  45. Yunoshin IMAI, Masao Izumiyama, Sub Zero Treatment of Quenched Steel. III : Effect of Aging on the Stabilization of Retained Austenite, Sci. Rep. Res. Inst. Tohoku Univ. Ser Phys. Chem. Metall. 11 (1959) 433–441.

    Google Scholar 

  46. L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jiménez, D. Raabe, Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe–Cr–C steel, Acta Mater. 60 (2012) 2790–2804. doi:10.1016/j.actamat.2012.01.045.

    Article  Google Scholar 

  47. J. Mola, B.C. De Cooman, Quenching and Partitioning (Q&P) Processing of Martensitic Stainless Steels, Metall. Mater. Trans. A. 44 (2013) 946–967. doi:10.1007/s11661-012-1420-1.

    Article  Google Scholar 

  48. H.S. Yang, H.K.D.H. Bhadeshia, Uncertainties in dilatometric determination of martensite start temperature, Mater. Sci. Technol. 23 (2007) 556–560.

    Article  Google Scholar 

  49. S.M.C. van Bohemen, J. Sietsma, Kinetics of martensite formation in plain carbon steels: critical assessment of possible influence of austenite grain boundaries and autocatalysis, Mater. Sci. Technol. 30 (2014) 1024–1033. doi:10.1179/1743284714Y.0000000532.

    Article  Google Scholar 

  50. Z. Nishiyama, Martensitic Transformation, Academic Press, New York, 1978.

    Google Scholar 

  51. C. Lerchbacher, S. Zinner, H. Leitner, Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1, Micron. 43 (2012) 818–826. doi:10.1016/j.micron.2012.02.005.

    Article  Google Scholar 

  52. M. Gouné, F. Danoix, S. Allain, O. Bouaziz, Unambiguous carbon partitioning from martensite to austenite in Fe–C–Ni alloys during quenching and partitioning, Scr. Mater. 68 (2013) 1004–1007. doi:10.1016/j.scriptamat.2013.02.058.

    Article  Google Scholar 

  53. K.R. Kinsman, J.G. Shyne, Thermal stabilization of austenite in iron-nickel-carbon alloys, Acta Metall. 15 (1967) 1527–1543. doi:10.1016/0001-6160(67)90184-8.

    Article  Google Scholar 

  54. P.L. Ferraglio, K. Mukherjee, The dynamics of nucleation and growth of a thermoelastic martensite in a splat quenched Au-47.5 at.% Cd alloy, Acta Metall. 22 (1974) 835–845. doi:10.1016/0001-6160(74)90050-9.

    Article  Google Scholar 

  55. S. Dash, N. Brown, Nucleation and growth of martensite in fe-32.3% Ni alloy, Acta Metall. 14 (1966) 595–603. doi:10.1016/0001-6160(66)90067-8.

    Article  Google Scholar 

  56. L. Samek, E.D. Moor, J. Penning, B.C.D. Cooman, Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels, Metall. Mater. Trans. A. 37 (2006) 109–124. doi:10.1007/s11661-006-0157-0.

    Article  Google Scholar 

  57. S. Nambu, N. Shibuta, M. Ojima, J. Inoue, T. Koseki, H.K.D.H. Bhadeshia, In situ observations and crystallographic analysis of martensitic transformation in steel, Acta Mater. 61 (2013) 4831–4839. doi:10.1016/j.actamat.2013.04.065.

    Article  Google Scholar 

  58. J. Ågren, A revised expression for the diffusivity of carbon in binary Fe-C austenite, Scr. Metall. 20 (1986) 1507–1510. doi:10.1016/0036-9748(86)90384-4.

    Article  Google Scholar 

  59. J. Mola, B.C. De Cooman, Quenching and partitioning processing of transformable ferritic stainless steels, Scr. Mater. 65 (2011) 834–837.

    Article  Google Scholar 

  60. J. Tobata, K.-L. Ngo-Huynh, N. Nakada, T. Tsuchiyama, S. Takaki, Role of Silicon in Quenching and Partitioning Treatment of Low-carbon Martensitic Stainless Steel, ISIJ Int. 52 (2012) 1377–1382.

    Article  Google Scholar 

  61. T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada, S. Takaki, Quenching and partitioning treatment of a low-carbon martensitic stainless steel, Mater. Sci. Eng. A. 532 (2012) 585–592.

    Article  Google Scholar 

  62. E.J. Seo, L. Cho, B.C.D. Cooman, Application of Quenching and Partitioning (Q&P) Processing to Press Hardening Steel, Metall. Mater. Trans. A. 45 (2014) 4022–4037. doi:10.1007/s11661-014-2316-z.

    Article  Google Scholar 

  63. R.M. Latanision, A.W. Ruff, The temperature dependence of stacking fault energy in Fe-Cr-Ni alloys, Metall. Trans. 2 (1971) 505–509. doi:10.1007/BF02663341.

    Article  Google Scholar 

  64. L. Rémy, A. Pineau, B. Thomas, Temperature dependence of stacking fault energy in close-packed metals and alloys, Mater. Sci. Eng. 36 (1978) 47–63. doi:10.1016/0025-5416(78)90194-5.

    Article  Google Scholar 

  65. P.L. Mangonon, G. Thomas, Structure and properties of thermal-mechanically treated 304 stainless steel, Metall. Trans. 1 (1970) 1587–1594. doi:10.1007/BF02642004.

    Article  Google Scholar 

  66. F. Lecroisey, A. Pineau, Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system, Metall. Trans. 3 (1972) 391–400. doi:10.1007/BF02642042.

    Article  Google Scholar 

  67. M. Benke, V. Mertinger, F. Tranta, In Situ Optical Microscope Examinations of the ε↔γ Transformations in FeMn(Cr) Austenitic Steels during Thermal Cycling, Mater. Sci. Forum. 738-739 (2013) 257–261. doi:10.4028/www.scientific.net/MSF.738-739.257.

    Article  Google Scholar 

  68. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, Prentice-Hall, Inc., Upper Saddle River, 2001.

    Google Scholar 

  69. R. Rahimi, H. Biermann, J. Mola, R. Ritzenhoff, Low-temperature tempering reactions in a high nitrogen martensitic stainless steel by magnetic saturation measurements, in: HNS 2014, Hamburg, Germany, 2014: pp. 182–190.

    Google Scholar 

  70. O.N. Mohanty, On the stabilization of retained austenite: mechanism and kinetics, Mater. Sci. Eng. B. 32 (1995) 267–278. doi:10.1016/0921-5107(95)03017-4.

    Article  Google Scholar 

  71. T.D. Bigg, D.V. Edmonds, E.S. Eardley, Real-time structural analysis of quenching and partitioning (Q&P) in an experimental martensitic steel, J. Alloys Compd. 577, Supplement 1 (2013) S695–S698. doi:10.1016/j.jallcom.2013.01.205.

    Article  Google Scholar 

  72. N. Nikolei, T. Rieger, W. Bleck, E. Schenuit, Tensile testing of “Quenching and Partitioning” microstructures with contact-free strain measurement, Mater. Werkst. 43 (2012) 950–956. doi:10.1002/mawe.201200935.

    Article  Google Scholar 

  73. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel, Acta Mater. 59 (2011) 6059–6068. doi:10.1016/j.actamat.2011.06.014.

    Article  Google Scholar 

  74. J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci. 8 (2004) 219–237.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of German Research Foundation (DFG) under Grant Number MO 2580/1-1 is gratefully acknowledged. The authors would also like to thank Mr. Gerhard Schreiber for the XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Mola.

Additional information

Manuscript submitted May 7, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., De Cooman, B.C., Biermann, H. et al. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic–Martensitic Stainless Steels. Metall Mater Trans A 47, 1947–1959 (2016). https://doi.org/10.1007/s11661-016-3382-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3382-1

Keywords

Navigation