Skip to main content
Log in

Determining Individual Phase Flow Properties in a Quench and Partitioning Steel with In Situ High-Energy X-Ray Diffraction and Multiphase Elasto-Plastic Self-Consistent Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The micromechanical properties of the constituent phases were characterized for advanced high-strength steels (AHSS) produced by a quenching and partitioning (Q&P) process with in situ tensile loading under synchrotron-based, high-energy X-ray diffraction. The constituent phases present are retained austenite and three martensites (tempered, untampered, and freshly formed martensites). For the material investigated, the 200 and 220 lattice strains of the retained austenite phase were calculated by examining the changes of the X-ray diffraction peak positions during deformation. The 200 and 211 lattice strains of the various martensitic phases with similar crystal structures were determined by separating their overlapped diffraction peaks. Apart from tempered and untempered martensite, the diffraction peaks of freshly formed martensite as a result of austenite-to-martensite transformation can also be separated due to a high initial austenite volume fraction. The phase stresses are first estimated with an empirical relationship through the X-ray diffraction elastic constants. A multiphase elasto-plastic self-consistent model is next used for more accurate determination of the constitutive behaviors of the various phases by comparing the predicted lattice strain distributions and global stress–strain curves with the measured ones. The determined constitutive laws will be used for microstructure-based modeling for sheet formability of the Q&P AHSS steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. 1. D.J. Lloyd: Scripta Mater., 2003, vol. 48, p. 341.

    Article  Google Scholar 

  2. 2. M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464, p. 1.

    Article  Google Scholar 

  3. 3. N. Jia, Z.H. Cong, X. Sun, S. Cheng, Z.H. Nie, Y. Ren, P.K. Liaw, and Y.D. Wang: Acta Mater., 2009, vol. 57, p. 3965.

    Article  Google Scholar 

  4. 4. G. Frommeyer, U. Brux, and P. Neumann: ISIJ Int., 2003, vol. 43, p. 438.

    Article  Google Scholar 

  5. 5. E. De Moor, C. Fojer, J. Penning, A.J. Clarke, and J.G. Speer: Phys. Rev. B, 2010, vol. 82, p. 104210.

    Article  Google Scholar 

  6. 6. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438, no. 440, p. 25.

    Article  Google Scholar 

  7. 7. U. F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, p. 171.

    Article  Google Scholar 

  8. 8. E.O. Hall: Proc. Phys. Soc. Sect. B, 1951, vol. 64, p. 747–52.

    Article  Google Scholar 

  9. 9. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, p. 25.

    Google Scholar 

  10. 10. X.H. Hu, P. Van Houtte, M. Liebeherr, A. Walentek, M. Seefeldt, and H. Vandekinderen: Acta Mater., 2006, vol. 54, p. 1029.

    Article  Google Scholar 

  11. 11. O. Bouaziz and P. Buessler: Adv. Eng. Mater., 2004, vol. 6, p. 79.

    Article  Google Scholar 

  12. 12.J.W. Hutchinson: Proc. Royal Soc. London Series A, 1970, vol. 319, p. 247-72.

    Article  Google Scholar 

  13. 13.J.W. Hutchinson (1976) Proc. R. Soc. London Series A-Math. Phys. Sci., 348: 101-27.

    Article  Google Scholar 

  14. 14. K.S. Choi, W.N. Liu, X. Sun, and M.A. Khaleel: Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2009, vol. 40A, p. 796.

    Article  Google Scholar 

  15. 15. Z. Marciniak, J. Duncan, and S.J. Hu: Mechanics of Sheet Metal Forming, Elsevier, Atlanta, GA, 2002.

    Google Scholar 

  16. 16. A.G. Considere: Ann. Ponts. Chausses, 1885, vol. 9, p. 574.

    Google Scholar 

  17. 17. X.H. Hu, M. Jain, D.S. Wilkinson, and R.K. Mishra: Acta Mater., 2008, vol. 56, p. 3187.

    Article  Google Scholar 

  18. 18. X. Sun, K.S. Choi, W.N. Liu, and M.A. Khaleel: Int. J. Plastic., 2009, vol. 25, p. 1888.

    Article  Google Scholar 

  19. 19. X.H. Hu, D.S. Wilkinson, M. Jain, P.D. Wu, and R.K. Mishra: Mater. Sci. Eng. A, 2011, vol. 528, p. 2002.

    Article  Google Scholar 

  20. 20. X.H. Hu, M. Jain, P.D. Wu, D.S. Wilkinson, and R.K. Mishra: J. Mater. Process. Tech., 2010, vol. 210, p. 1232.

    Article  Google Scholar 

  21. 21. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, Y. Ren, and Y.D. Wang: Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2008, vol. 39A, p. 3089.

    Article  Google Scholar 

  22. 22. K.S. Choi, W.N. Liu, X. Sun, and M.A. Khaleel: Acta Mater., 2009, vol. 57, p. 2592.

    Article  Google Scholar 

  23. 23. H. Ghassemi-Armaki, P. Chen, S. Bhat, S. Sadagopan, S. Kumar, and A. Bower: Acta Mater., 2013, vol. 61, p. 3640.

    Article  Google Scholar 

  24. 24. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Acta Mater., 2001, vol. 49, p. 3899.

    Article  Google Scholar 

  25. 25. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler: Acta Mater., 2003, vol. 51, p. 1663.

    Article  Google Scholar 

  26. 26. N. Jia, R. Lin Peng, Y.D. Wang, S. Johansson, and P.K. Liaw: Acta Mater., 2008, vol. 56, p. 782.

    Article  Google Scholar 

  27. 27. Z.H. Cong, N. Jia, X. Sun, Y. Ren, J. Almer, and Y.D. Wang: Metall. Mater. Trans. A, 2009, vol. 40, p. 1383.

    Article  Google Scholar 

  28. 28. P. Van Houtte and L. De Buyser: Acta Metall. Mater., 1993, vol. 41, p. 323.

    Article  Google Scholar 

  29. 29. H. Dolle: J. Appl. Cryst., 1979, vol. 12, p. 489.

    Article  Google Scholar 

  30. 30.W. Voigt: Lehrbuch der Kristallphysik, Teubner-Verlag, Berlin, 1928.

    Google Scholar 

  31. 31. A. Reuss: Z. Angew. Math. Mech., 1929, vol. 9, p. 49.

    Article  Google Scholar 

  32. 32. K.S. Choi, X.H. Hu, X. Sun, M.D. Taylor, E. De Moor, J. Speer, and D.K. Matlock: Sae Technicalpaper Series, 2014, vol. 2014, no. 1, p. 812.

    Google Scholar 

  33. 33. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang: Scripta Mater., 2013, vol. 68, p. 321.

    Article  Google Scholar 

  34. 34. P. Van Houtte: The MTM-FHM Software System, version 2, Katholieke Universiteit Leuven, Belgium, 2000.

    Google Scholar 

  35. 35. W.H. Bragg and W.L. Bragg: Proc. R. Soc. London. Series A, 1913, vol. 88, p. 428.

    Article  Google Scholar 

  36. A.P. Hammersley: ESRF International Report No. ESRF98HA01T. Program http://www.esrf.eu/computing/scientific/FIT2D, 2004.

  37. Origin, Origin 86: 2015.

  38. 39. H. Moller and G. Martin: Mitt. Kaiser Wilhelm Inst. Eisenforsch. Duesseldorf 1939, vol. 21, p. 261.

    Google Scholar 

  39. 40. S.A. Kim and W.L. Johnson: Mater. Sci. Eng. A, 2007, vol. 452, no. 453, p. 633.

    Article  Google Scholar 

  40. 41. P.A. Turner and C.N. Tome: Acta Metall. Mater., 1994, vol. 42, p. 4143.

    Article  Google Scholar 

  41. J.J. Coryell, V. Savic, S.K. Mishra, S.M. Tiwari, L.G. Hector, J.R. Bradley, F.E. Pinkerton, K.S. Snavely, and J. Li: GM Internal Report, 2012, vol. 13, p. 191.

  42. 43. S. He, A. Van Bael, S.Y. Li, P. Van Houtte, F. Mei, and A. Sarban: Mater. Sci. Eng. A, 2003, vol. 346, p. 101.

    Article  Google Scholar 

  43. J. Tacq, M. Kriška, and M. Seefeldt: Synchrotron Diffraction Study of the Cementite Phase in Cold Drawn Pearlitic Steel Wires, presented at International Conference on Residual Stresses 9 (ICRS 9), 2014.

Download references

Acknowledgment

The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the U.S. Department of Energy under Contract no. DE-AC06-76RL01830. This work was funded by the Department of Energy Office of FreedomCar and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Mr. William Joost. This research used resources from the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Hu.

Additional information

X.H. Hu, K.S. Choi, and X. Sun are employed by Pacific Northwest National Laboratory. Y. Ren is employed by Argonne National Laboratory. U.S. Government work is not protected by U.S. Copyright.

Manuscript Submitted October 29, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Choi, K.S., Sun, X. et al. Determining Individual Phase Flow Properties in a Quench and Partitioning Steel with In Situ High-Energy X-Ray Diffraction and Multiphase Elasto-Plastic Self-Consistent Method. Metall Mater Trans A 47, 5733–5749 (2016). https://doi.org/10.1007/s11661-016-3373-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3373-2

Keywords

Navigation