Skip to main content
Log in

Effects of Treatment Duration and Cooling Rate on Pure Aluminum Solidification Upon Pulse Magneto-Oscillation Treatment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of pulse magneto-oscillation (PMO) treatment on casting grain size has been widely investigated. Nevertheless, its mechanism remains unclear, especially when PMO is applied at different periods during solidification, namely when only applied above the melting point. In the present work, the effect of PMO treatment applied at different segments during solidification was investigated. It was found that the dendrite fragmentation model may well explain the effect of PMO applied during the dendrite growth stage. However, only the cavities activation model may account for the effect when PMO is conducted above the melting point. In current study, the effect of PMO treatment on grain size was also investigated at various cooling rates. It was established that the cooling rate had only a slight effect on grain size when PMO treatment was applied. Thus, PMO treatment may provide homogeneous grain size distribution in castings with different wall thicknesses that solidified with various cooling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.V. Neff: ASM Handbook, Casting, vol. 15, ASM International, Metals Park, OH, 1998, p. 964.

    Google Scholar 

  2. G.I. Eskin: Ultrasonic Sonochem., 1995, vol. 2, no. 2, pp. 137-141.

    Article  Google Scholar 

  3. O.V. Abramov: Ultrasonics, 1987, vol. 25, pp. 73-82.

    Article  Google Scholar 

  4. J. Campbell: Int. Met. Rev., 1981, vol. 2, pp. 71-108.

    Google Scholar 

  5. C. Vives: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 445-455.

    Article  Google Scholar 

  6. A. Prodhan, C.S. Sivaramakrishnan, and A.K. Chakrabarti: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 372-378.

    Article  Google Scholar 

  7. R.S. Qin and B.L. Zhou: Int. J. Non-Equilibrium Processing, 1998, vol. 11, pp. 77-86.

    Google Scholar 

  8. J.P. Barnak, A.F. Sprecher, and H. Conrad: Scripta Metall. Mater., 1995, vol. 32, pp. 879-884.

    Article  Google Scholar 

  9. H. Jiang, J. Zhao, C. Wang, and X. Liu: Mater. Lett., 2014, vol. 132, pp. 66-69.

    Article  Google Scholar 

  10. J. Li, J. Ma, Y. Gao, and Q. Zhai: Mater. Sci. Eng. A, 2008, vol. 490, pp. 452-456.

    Article  Google Scholar 

  11. Y.-Y. Gong, J. Luo, J.-X. Jing, Z.-Q. Xia, and Q. Zhai: Mater. Sci. Eng. A, 2008, vol. 497, pp. 147-152.

    Article  Google Scholar 

  12. X. Liao, Q. Zhai, J. Luo, W. Chen, and Y. Gong: Acta Mater., 2007, vol. 55, pp. 3103-3109.

    Article  Google Scholar 

  13. D. Liang, Z. Liang, Q. Zhai, G. Wang, and D.H. St. John: Mater. Lett., 2014, vol. 130, pp. 48-50.

    Article  Google Scholar 

  14. Y. Zhang, C. Song, L. Zhu, H. Zheng, H. Zhong, Q. Han, and Q. Zhai: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 604-611.

    Article  Google Scholar 

  15. B. Wang, Y.S. Yang, J. Zhou, and W. Tong: Mater. Sci. Technol., 2011, vol. 27, no. 1, pp. 176-179.

    Article  Google Scholar 

  16. D. Räbiger, Y. Zhang, V. Galindo, S. Franke, B. Willers, and S. Eckert: Acta Mater., 2014, vol. 79, pp. 327-338.

    Article  Google Scholar 

  17. Y.H. Zhang, D. Räbiger, and S. Eckert: TMS 2015 Annual Meeting Supplemental Proceedings, 2015, pp. 33–38.

  18. B. Willers, S. Eckert, P.A. Nikrityuk, D. Räbiger, J. Dong, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 304-316.

    Article  Google Scholar 

  19. D. Hongsheng, Z. Yong, J. Sanyong, C. Ruirun, Z. Zhilong, G. Jingjie, X. Daming, and F. Hengzhi: China Foundry, 2009, vol. 6, pp. 24-31.

    Google Scholar 

  20. H. Lijia, W. Jianzhong, Q. Jingang, D. Huiling, and Z. Zuofu: China Foundry, 2010, vol. 7, pp. 153-156.

    Google Scholar 

  21. I. Edry, V. Erukhimovitch, A. Shoihet, Y. Mordekovitz, N. Frage, and S. Hayun: J. Mater. Sci., 2013, vol. 48, pp. 8438-8442.

    Article  Google Scholar 

  22. V.V. Krumsky, N.A. Shaburova, and I.E. Filimonov: J. Chemist. Chem. Eng., 2012, vol. 6, pp. 967-970.

    Google Scholar 

  23. T. Campanella, C. Charbon, and M. Rappaz: M., Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3201-3210.

    Article  Google Scholar 

  24. L. Bolzoni, M. Nowak, and N. Hari Babu: Mater. Design, 2015, vol. 66, pp. 376–383.

    Article  Google Scholar 

  25. J.A. Dantzig and M. Rappaz: Solidification, EPFL Press, Lausanne, 2009.

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M. Shvartsas and A. Shoihet for their expert technical assistance in construction of the experimental apparatus. This work was supported by The PAZI Foundation (Grant No. 239-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itzhak Edry.

Additional information

Itzhak Edry and Tomer Mordechai have contributed equally to this work.

Manuscript submitted July 26, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edry, I., Mordechai, T., Frage, N. et al. Effects of Treatment Duration and Cooling Rate on Pure Aluminum Solidification Upon Pulse Magneto-Oscillation Treatment. Metall Mater Trans A 47, 1261–1267 (2016). https://doi.org/10.1007/s11661-015-3306-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3306-5

Keywords

Navigation