Skip to main content
Log in

Phase Field Modeling of Microstructure Banding in Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A phase field model (PFM) is applied to simulate the effects of microsegregation, cooling rate, and austenite grain size on banding in a C-Mn steel. The PFM simulations are compared with experimental observations of continuous cooling transformation tests in the investigated steel. Using electron probe microanalysis, the microsegregation characteristics of Mn were determined and introduced into the model. Ferrite nucleation is assumed to occur at austenite grain boundaries, and ferrite growth is simulated as mixed-mode reaction for para-equilibrium conditions. The driving pressure for the austenite to ferrite transformation depends on Mn concentration and thus varies between the alternating microsegregation layers. In agreement with experimental observations, the simulation results demonstrate that by increasing the cooling rate and/or austenite grain size, banding tends to disappear as the transformation shifts to lower temperatures such that ferrite also forms readily in the layers with higher Mn levels. Further, a parametric study is conducted by changing thickness and Mn content of the bands. In accordance with experimental observations, it is shown that for sufficiently large band thickness, band splitting takes place where ferrite grains form close to the center of the Mn-rich band. Changing the degree of Mn segregation indicates that a segregation level of 0.2 wt pct is necessary in the present case to achieve banded microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1. G. Krauss, Metall Mater Trans B 2003, vol. 34, pp. 781-792.

    Article  Google Scholar 

  2. 2. R. Grossterlinden, R. Kawalla, U. Lotter and H. Pircher, Steel Res 1992, vol. 63, pp. 331-336.

    Google Scholar 

  3. T. Majka, D. Matlock, and G. Krauss, Metall. Mater. Trans. A 2002, vol. 33, pp. 1627-1637.

    Article  Google Scholar 

  4. 4. S. E. Offerman, N. H. van Dijk, M. T. Rekveldt, J. Sietsma and S. van der Zwaag, Mater Sci Tech 2002, vol. 18, pp. 297-303.

    Article  Google Scholar 

  5. 5. P. E. J. Rivera-Diaz-Del-Castillo, J. Sietsma and S. Van der Zwaag, Metall Mater Trans A 2004, vol. 35A, pp. 425-433.

    Article  Google Scholar 

  6. 6. S. W. Thompson and P. R. Howell, Mater Sci Technol 1992, vol. 8, pp. 777-784.

    Article  Google Scholar 

  7. 7. J. S. Kirkaldy, J. von Destinon-Forstmann and R. J. Brigham, Can Metall Quart 1962, vol. 1, pp. 59-81.

    Article  Google Scholar 

  8. 8. C. Bos, M. G. Mecozzi, D. N. Hanlon, M. P. Aarnts and J. Sietsma, Metall Mater Trans A 2011, vol. 42A, pp. 3602-3610.

    Article  Google Scholar 

  9. 9. M. Militzer, M. G. Mecozzi, J. Sietsma and S. van der Zwaag, Acta Mater 2006, vol. 54, pp. 3961-3972.

    Article  Google Scholar 

  10. 10. R. S. Qin and H. K. Bhadeshia, Mater Sci Tech 2010, vol. 26, pp. 803-811.

    Article  Google Scholar 

  11. 11. T. W. Heo and L. Q. Chen, JOM 2014, vol. 66, pp. 1520-1528.

    Article  Google Scholar 

  12. 12. C. Shen, J. Li and Y. Z. Wang, Metall Mater Trans A 2008, vol. 39A, pp. 976-983.

    Article  Google Scholar 

  13. 13. L. Zhang, L. Q. Chen and Q. Du, J. Comput. Phys. 2010, vol. 229, pp. 6574-6584.

    Article  Google Scholar 

  14. 14. R. G. Thiessen, J. Sietsma, T. A. Palmer, J. W. Elmer and I. M. Richardson, Acta Materialia 2007, vol. 55, pp. 601-614.

    Article  Google Scholar 

  15. 15. M.G. Mecozzi, M. Militzer, J. Sietsma and S. van der Zwaag, Metall Mater Trans A 2008, vol. 39, pp. 1237-1247.

    Article  Google Scholar 

  16. 16. M. Militzer, Curr Opin Solid St M 2011, vol. 15, pp. 106-115.

    Article  Google Scholar 

  17. 17. H. Azizi-Alizamini, M. Militzer and W. J. Poole, Metall Mater Trans A 2011, vol. 42A, pp. 1544-1557.

    Article  Google Scholar 

  18. Phase field simulation software MICRESS, versions 6.01 (2013). www.micress.de.

  19. 19. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G. J. Schmitz and J. L. L. Rezende, Physica D 1996, vol. 94, pp. 135-147.

    Article  Google Scholar 

  20. 20. J. Tiaden, B. Nestler, H. J. Diepers and I. Steinbach, Physica D 1998, vol. 115, pp. 73-86.

    Article  Google Scholar 

  21. 21. W. F. Lange, M. Enomoto and H. I. Aaronson, Metall Mater Trans A 1988, vol. 19, pp. 427-440.

    Article  Google Scholar 

  22. 22. S. E. Offerman, N. H. van Dijk, J. Sietsma, S. Grigull, E. M. Lauridsen, L. Margulies, H. F. Poulsen, M. T. Rekveldt and S. van der Zwaag, Science 2002, vol. 298, pp. 1003-1005.

    Article  Google Scholar 

  23. 23. G. P. Krielaart and S. van der Zwaag, Mater Sci Tech 1998, vol. 14, pp. 10-18.

    Article  Google Scholar 

  24. Handbook of chemistry and physics. CRC Press, Boca Raton (FL), 1989.

  25. 25. J. A. Eckert, P. R. Howell and S. W. Thompson, J Mater Sci 1993, vol. 28, pp. 4412-4420.

    Article  Google Scholar 

  26. 26. L.E. Samuels, In ASM, (Metals Park: OH, 1980).

    Google Scholar 

  27. 27. J. D. Verhoeven, J Mater Eng Perform 2000, vol. 9, pp. 286-296.

    Article  Google Scholar 

  28. 28. P.G. Bastien, J Iron Steel Inst 1957, vol. 187, pp. 281–291.

    Google Scholar 

Download references

Acknowledgment

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Militzer.

Additional information

Manuscript submitted November 17, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maalekian, M., Azizi-Alizamini, H. & Militzer, M. Phase Field Modeling of Microstructure Banding in Steels. Metall Mater Trans A 47, 608–622 (2016). https://doi.org/10.1007/s11661-015-3225-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3225-5

Keywords

Navigation