Skip to main content
Log in

Phase-Field Modeling of Nucleation in Solid-State Phase Transformations

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nucleation is a critically important process as the rate of nucleation determines the number density of new phase particles and thus microstructures of a material during phase transformations. Predicting and controlling nucleation rates in solids is one of the grand challenges in materials science because the spatial scale involved in nucleation is at the atomic/nanoscale, the rate of nucleation process is extremely temperature sensitive, and the morphology of a critical nucleus can be highly nonspherical and complex. In this article, we briefly review the recent advances in modeling and predicting nucleation during solid-phase transformations based on the diffuse-interface or nonclassical description of critical nucleus profiles. The focus is on predicting the critical nucleus morphology and nucleation free energy barrier under the influence of anisotropic interfacial energy and elastic interactions. Incorporation of nucleation events in phase-field modeling of solid-to-solid phase transformations and microstructure evolution is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.W. Oxtoby, J. Phys.-Condens. Mater. 4, 7627 (1992).

    Article  Google Scholar 

  2. D.W. Oxtoby, Acc. Chem. Res. 31, 91 (1998).

    Article  Google Scholar 

  3. J.D. Gunton, J. Stat. Phys. 95, 903 (1999).

    Article  MATH  Google Scholar 

  4. L. Granasy and P.F. James, J. Non-Cryst. Solids 253, 210 (1999).

    Article  Google Scholar 

  5. D.T. Wu, L. Granasy, and F. Spaepen, MRS Bull. 29, 945 (2004).

    Article  Google Scholar 

  6. L.Q. Chen, Ann. Rev. Mater. Res. 32, 113 (2002).

    Article  Google Scholar 

  7. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Ann. Rev. Mater. Res. 32, 163 (2002).

    Article  Google Scholar 

  8. L. Granasy, T. Pusztai, T. Borzsonyi, G. Toth, G. Tegze, J.A. Warren, and J.F. Douglas, J. Mater. Res. 21, 309 (2006).

    Article  Google Scholar 

  9. H. Emmerich, Adv. Phys. 57, 1 (2008).

    Article  Google Scholar 

  10. N. Moelans, B. Blanpain, and P. Wollants, CALPHAD 32, 268 (2008).

    Article  Google Scholar 

  11. I. Steinbach, Model. Simul. Mater. Sci. 17, 073001 (2009).

    Article  MathSciNet  Google Scholar 

  12. J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 31, 688 (1959).

    Article  Google Scholar 

  13. J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Article  Google Scholar 

  14. R. Poduri and L.Q. Chen, Acta Mater. 44, 4253 (1996).

    Article  Google Scholar 

  15. L. Granasy, T. Borzsonyi, and T. Pusztai, Phys. Rev. Lett. 88, 206105 (2002).

    Article  Google Scholar 

  16. L. Granasy, T. Pusztai, D. Saylor, and J.A. Warren, Phys. Rev. Lett. 98, 035703 (2007).

    Article  Google Scholar 

  17. T. Pusztai, G. Tegze, G.I. Toth, L. Kornyei, G. Bansel, Z.Y. Fan, and L. Granasy, J. Phys.-Condens. Mater. 20, 404205 (2008).

  18. A. Roy, J.M. Rickman, J.D. Gunton, and K.R. Elder, Phys. Rev. E 57, 2610 (1998).

    Article  Google Scholar 

  19. Y.A. Chu, B. Moran, A.C.E. Reid, and G.B. Olson, Metall. Mater. Trans. A 31, 1321 (2000).

    Article  Google Scholar 

  20. R. Kubo, Rep. Prog. Phys. 29, 255 (1966).

    Article  Google Scholar 

  21. E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, Part I, Landau and Lifshitz Course of Theoretical Physics (Oxford, U.K.: Pergamon Press, 1980).

    Google Scholar 

  22. J.P. Simmons, C. Shen, and Y. Wang, Scripta Mater. 43, 935 (2000).

    Article  Google Scholar 

  23. J.P. Simmons, C. Shen, and Y. Wang (Paper presented at the Materials Research Society Symposium Proceedings, 2000, Vol. 580), p. 417.

  24. J.P. Simmons, Y.H. Wen, C. Shen, and Y.Z. Wang, Mater. Sci. Eng. A 365, 136 (2004).

    Article  Google Scholar 

  25. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (London, U.K.: Chapman & Hall, 1992).

    Book  Google Scholar 

  26. H.I. Aaronson and J.K. Lee, Lectures on the Theory of Phase Transformations (New York: TMS, 1975).

    Google Scholar 

  27. E. Wigner, Trans. Faraday Soc. 34, 0029 (1938).

    Article  Google Scholar 

  28. P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations (Providence, RI: American Mathematical Society, 1986).

    Google Scholar 

  29. J.J. More and T.S. Munson, Math. Program. 100, 151 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  30. E. Weinan, W.Q. Ren, and E. Vanden-Eijnden, Phy. Rev. B 66, 052301 (2002).

    Google Scholar 

  31. E.W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 126, 164103 (2007).

    Article  Google Scholar 

  32. Q. Du and L. Zhang, Commun. Math. Sci. 7, 1039 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  33. L. Zhang, L.-Q. Chen, and Q. Du, Commun. Comput. Phys. 7, 674 (2010).

    Google Scholar 

  34. G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978 (2000).

    Article  Google Scholar 

  35. G. Henkelman, B.P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).

    Article  Google Scholar 

  36. T. Zhu, J. Li, A. Samanta, H.G. Kim, and S. Suresh, Proc. Natl. Acad. Sci. USA 104, 3031 (2007).

    Article  Google Scholar 

  37. G. Henkelman and H. Jonsson, J. Chem. Phys. 111, 7010 (1999).

    Article  Google Scholar 

  38. J. Zhang and Q. Du, SIAM J. Numer. Anal. 50, 1899 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  39. J. Zhang and Q. Du, J. Comput. Phys. 231, 4745 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  40. L. Zhang, L.-Q. Chen, and Q. Du, Phys. Rev. Lett. 98, 265703 (2007).

    Article  Google Scholar 

  41. L. Zhang, L.-Q. Chen, and Q. Du, Acta Mater. 56, 3568 (2008).

    Article  Google Scholar 

  42. L. Zhang, L.-Q. Chen, and Q. Du, J. Sci. Comput. 37, 89 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  43. C. Shen, J. Li, and Y.Z. Wang, Metall. Mater. Trans. A 39A, 976 (2008).

    Article  Google Scholar 

  44. L. Zhang, L.-Q. Chen, and Q. Du, J. Comput. Phys. 229, 6574 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  45. J.W. Cahn, Acta Metall. 9, 795 (1961).

    Article  Google Scholar 

  46. S.M. Allen and J.W. Cahn, Acta Metall. 27, 1085 (1979).

    Article  Google Scholar 

  47. V. Vaithyanathan and L.Q. Chen, Acta Mater. 50, 4061 (2002).

    Article  Google Scholar 

  48. T.W. Heo, S. Bhattacharyya, and L.Q. Chen, Philos. Mag. 93, 1468 (2013).

    Article  Google Scholar 

  49. T.W. Heo, L. Zhang, Q. Du, and L.-Q. Chen, Scripta Mater. 63, 8 (2010).

    Article  Google Scholar 

  50. C. Shen, J.P. Simmons, and Y. Wang, Acta Mater. 54, 5617 (2006).

    Article  Google Scholar 

  51. C. Shen, J.P. Simmons, and Y. Wang, Acta Mater. 55, 1457 (2007).

    Article  Google Scholar 

  52. L. Zhang (Ph.D. Dissertation, The Pennsylvania State University, 2009).

  53. Y. Li, S. Hu, L. Zhang, and X. Sun, Model. Simul. Mater. Sci. 22, 025002 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The work of T.W. Heo was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-053. L.Q. Chen acknowledges the financial support by NSF under CMMI-1235092 and DOE Basic Sciences under the CMCSN Program. We acknowledge the figure permissions from the American Physical Society, Elsevier, Springer, Global Science Press, Taylor & Francis, IOP Publishing, and Dr. L. Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Wook Heo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, T.W., Chen, LQ. Phase-Field Modeling of Nucleation in Solid-State Phase Transformations. JOM 66, 1520–1528 (2014). https://doi.org/10.1007/s11837-014-1033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1033-9

Keywords

Navigation