Skip to main content
Log in

Influence of Heat Input on Microstructure and Toughness Properties in Simulated CGHAZ of X80 Steel Manufactured Using High-Temperature Processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To determine and demonstrate the weldability of high-Nb high-temperature processed (HTP) steels and provide extremely valuable information for future line pipe steel design and general steel manufacture, in the current study the toughness in simulated coarse-grained heat-affected zone (CGHAZ) of an X80 grade steel manufactured using HTP was evaluated. The simulated CGHAZs subjected to thermal cycles with various heat inputs (HIs) (0.8 to 5.0 kJ/mm) were produced using a Gleeble 3500 simulator. The microstructures and corresponding mechanical properties were investigated by means of optical microscopy, scanning electron microscopy, electron backscatter diffraction, hardness testing, and Charpy V-notch (CVN) testing. The microstructural examination shows that the simulated CGHAZs consisted of a bainite-dominant microstructure and relatively low amount (<2 pct) of martensite–austenite (M–A) constituent. The prior austenite grain size was controlled to be 45 to 55 µm at HIs of 0.8 to 3.5 kJ/mm, and remarkably increased to 85 µm at an HI of 5 kJ/mm. The results of CVN testing suggest that superior toughness can be achieved in the studied range of HIs (0.8 to 5 kJ/mm). This is thought to be associated with the combined effects of bainitic microstructure and low M–A fraction as well as comparatively fine austenite grain size in the studied CGHAZs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Weng, H. Dong and Y. Gan: Innovative Steels for Low Carbon Economy, in Advanced Steels, Springer Berlin Heidelberg, Berlin, 2011.

    Google Scholar 

  2. J. Morris: Sci., 2008, vol. 320, pp. 1022-3.

    Article  Google Scholar 

  3. I. Takeuchi, J. Fujino, A. Yamamoto, and S. Okaguchi: Pipes Pipelines Int., 2003, vol. 48, pp. 33-43.

    Google Scholar 

  4. L. Briottet, R. Batisse, G. de Dinechin, P. Langlois, and L. Thiers: Int. J. Hydrogen Energy, 2012, vol. 37 (11), pp. 9423-30.

    Article  Google Scholar 

  5. P. Venton: In X80 Pipeline Cost Workshop, Hobart, Australia, 2002, pp. 13–23.

  6. F. Barbaro, L. Fletcher, C. Dinnis, J. Piper, and J.M. Gray: Proc. 18th Joint Technical Meeting on Pipeline Research, San Francisco, 2011, pp. 1–21.

  7. A.D. Batte, P.J. Boothby, and A.B. Rothwell: Proc. Int. Symposium Niobium, 2001, pp. 931–58.

  8. C. Shang and X. Wang: Proceedings of the International Seminar on Welding of High Strength Pipeline Steel, TMS, Araxá, Brazil, 2011, pp. 435–53.

  9. A.M. Guo, S.R. Li, J. Guo, P.H. Li, Q.F. Ding, K.M. Wu, and X.L. He: Mater. Charact., 2008. vol. 59, pp. 134-9.

    Article  Google Scholar 

  10. A. De Ardo, J. Gray, and L. Meyer: Niobium-Proceedings of the International Symposium, 1984.

  11. J.M. Gray: Niobium science and technology, Niobium, 2002, vol. 2001: pp. 889-906.

    Google Scholar 

  12. H. Mohrbacher: Mater. Sci. Forum, 2007, vol. 539-543, pp. 4470-5.

    Google Scholar 

  13. S. Vervynckt, K. Verbeken, P. Thibaux, M. Liebeherr, and Y. Houbaert: ISIJ Int., 2009, vol. 49 (6): pp. 911-20.

    Article  Google Scholar 

  14. K. Hulka, P. Bordignon, and J.M. Gray: International Seminar The HTP Steel Project, Araxá, Brazil, 2003, Technical Report No. 1.

  15. B. Ouaissa, J. Brózda, I. Spawalnictwa, M. Pérez-Bahillo, S. Bremer, and W. de Waele: 17th Biennial Joint Technical Meeting on Pipeline Research, Milan, 2009, pp. 11–15.

  16. K. Hulka and J.M. Gray: Proc. Int. Symposium Niobium, 2001, pp. 587–612.

  17. D.G. Stalheim: Iron Steel, 2005, vol. 40(S): pp. 699–704.

  18. A. Das: Mater. Manuf. Process, 2010, vol. 25 (1-3): pp. 14-9.

    Article  Google Scholar 

  19. L. Zheng, and J.Y. Fu: Iron and Steel, 2006, vol. 41: pp. 1–10.

    Google Scholar 

  20. L. Feng, X. Gao, and C. Qiu: Hot Working Technol., 2010, vol. 6: pp. 20.

    Google Scholar 

  21. B. Hwang, Y.M. Kim, S.H. Lee, N.J. Kim, and S.S. Ahn: Metall. Mater. Trans. A, 2005, vol. 36A: pp. 725-39.

    Article  Google Scholar 

  22. C.W. Li, W. Wang, T. Han, B. Han, and L.Y. Li: J. Mater. Sci., 2011, vol. 46: pp. 727-33.

    Article  Google Scholar 

  23. Y. You, C.J. Shang, W.J. Nie, and S. Sundaresa: Mater. Sci. Eng. A, 2012, vol. 558: pp. 692-701.

    Article  Google Scholar 

  24. X.W. Chen, G.Y. Qiao, X.L. Han, X. Wang, F.R. Xiao, and B. Liao: Mater. Des., 2014, vol. 53: pp. 888-901.

    Article  Google Scholar 

  25. L. Zheng, S. Gao, C.G. Zhang, B. Zhang, and Y.F. Li: Welded Pipe and Tube, 2009, vol. 32: pp. 25-9.

    Google Scholar 

  26. F.S. LePera: J. Met. 1980, vol. 32, pp. 38–39.

  27. C.W. Li, Y. Wang, and T. Han: Mater. Sci. Technol., 2012, vol. 28: pp. 92-4.

    Article  Google Scholar 

  28. W.A. Bruce and M.A. Boring: Proc. 6th Int. Pipeline Conf., Calgary, Canada, 2006, pp. 283–96.

  29. G. Krauss, and S.W. Thompson: ISIJ Int., 1995, vol. 35: pp. 937-45.

    Article  Google Scholar 

  30. B. Bramfitt, and J. Speer: Metall. Trans. A, 1990, vol. 21: pp. 817-29.

    Article  Google Scholar 

  31. H.K. Sung, S.Y. Shin, W. Cha, K. Oh, S. Lee, and N.J. Kim: Mater. Sci. Eng. A, 2011, vol. 528: pp. 3350-7.

    Article  Google Scholar 

  32. K. Shibata, and K. Asakura: ISIJ Int., 1995, vol. 35: pp. 982-91.

    Article  Google Scholar 

  33. S.Y. Shin, K.J. Woo, B. Hwang, S. Kim, and S. Lee: Metall. Mater. Trans. A, 2009, vol. 40: pp. 867–76.

    Article  Google Scholar 

  34. O. Akselsen, J. Solberg, and O. Grong: Scand. J. Metall., 1988, vol. 17: pp. 194-200.

    Google Scholar 

  35. Z.X. Zhu, M. Marimuthu, L. Kuzmikova, H.J. Li, F. Barbaro, L. Zheng, M.Z. Bai, and C. Jones: Sci. Technol. Weld. Join., 2013, vol. 18: pp. 45-51.

    Article  Google Scholar 

  36. M. Suehiro: ISIJ Int., 1998, vol. 38: pp. 547-52.

    Article  Google Scholar 

  37. N. Yurioka, M. Okumura, T. Kasuya, and H.J.U. Cotton: Met. Constr., 1987, vol. 19: pp. 217–23.

    Google Scholar 

  38. E. Essadiqi, and J.J. Jonas: Metall. Trans. A, 1988, vol. 19: pp. 417-26.

    Article  Google Scholar 

  39. B.B. Vynokur: Mater. Sci., 1996, vol. 32: pp. 144-57.

    Article  Google Scholar 

  40. Y.Q. Zhang, H.Q. Zhang, J.F. Li, and W.M. Liu: J. Iron Steel Res. Int., 2009, vol. 16: pp. 73-80.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Microalloyed Steel Institute (USA) for providing the materials to conduct this study. The authors also acknowledge the use of facilities within the UOW Electron Microscopy Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Han.

Additional information

Manuscript submitted May 13, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Han, J. & Li, H. Influence of Heat Input on Microstructure and Toughness Properties in Simulated CGHAZ of X80 Steel Manufactured Using High-Temperature Processing. Metall Mater Trans A 46, 5467–5475 (2015). https://doi.org/10.1007/s11661-015-3122-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3122-y

Keywords

Navigation