Skip to main content
Log in

Alternate Anodes for the Electrolytic Reduction of UO2

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The electrolytic reduction process of UO2 employs a platinum anode and a stainless steel cathode in molten LiCl-LiO2 maintained at 973 K (700 °C). The degradation of platinum under the severely oxidizing conditions encountered during the process is an issue of concern. In this study, Inconel 600 and 718, stainless steel alloy 316, tungsten, nickel, molybdenum, and titanium, were investigated though electrochemical polarization techniques, electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy to serve as potential anode materials. Of the various materials investigated, only tungsten exhibited sufficient stability at the required potential in the molten electrolyte. Tungsten anodes were further studied in molten LiCl-LiO2 electrolyte containing 2, 4, and 6 wt pct of Li2O. In LiCl-2 wt pct Li2O tungsten was found to be sufficiently stable to both oxidation and microstructural changes and the stability is attributed to the formation of a lithium-intercalated tungsten oxide surface film. Increase in the concentration of Li2O was found to lead to accelerated corrosion of the anode, in conjunction with the formation of a peroxotungstate oxide film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

SS 316:

Stainless steel alloy 316

SEM:

Scanning electron microscope

E OCP :

Open circuit potential

E corr :

Corrosion potential

SHE:

Standard hydrogen electrode

References

  1. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, E.L. Carls, Prog. Nucl. Energy, 31 (1997) 131-140.

    Article  Google Scholar 

  2. J.P. Ackerman, T.R. Johnson, L.S.H. Chow, E.L. Carls, W.H. Hannum, J.J. Laidler, Prog. Nucl. Energy, 31 (1997) 141-154.

    Article  Google Scholar 

  3. S.W. Kwon, D.H. Ahn, E.H. Kim, and H.G. Ahn: J. Ind. Eng. Chem. (Seoul, Repub. Korea), 2009, vol. 15, pp. 86–91.

  4. T. Inoue, T. Koyama, Y. Arai, Energy Procedia, 7 (2011) 405-413.

    Article  Google Scholar 

  5. S.M. Jeong, B.H. Park, J.-i.-m. Hur, C.-S. Seo, H. Lee, and K.-C. Song: Nucl. Eng. Technol., 2010, vol. 42 pp. 183–92.

  6. S. Herrmann, S. Li, M. Simpson, J. Nucl. Sci. Technol., 44 (2007) 361-367.

    Article  Google Scholar 

  7. T. Shimada, N. Tedzuka, Y. Shimizu, M. Miyake, J. Alloys Compd., 204 (1994) 1-4.

    Article  Google Scholar 

  8. M. Gibilaro, L. Cassayre, O. Lemoine, L. Massot, O. Dugne, R. Malmbeck, P. Chamelot, J. Nucl. Mater., 414 (2011) 169-173.

    Article  Google Scholar 

  9. Y. Sakamura, J. Nucl. Mater., 412 (2011) 177-183.

    Article  Google Scholar 

  10. J.-M. Hur, C.-S. Seo, S.-S. Hong, D.-S. Kang, S.-W. Park, React. Kinet. Catal. Lett., 80 (2003) 217-222.

    Article  Google Scholar 

  11. D. Sri Maha Vishnu, N. Sanil, N. Murugesan, L. Shakila, C. Ramesh, K.S. Mohandas, and K. Nagarajan: J. Nucl. Mater., 2012, vol. 427 pp. 200–08.

  12. B.H. Park, I.W. Lee, C.S. Seo, Chem. Eng. Sci., 63 (2008) 3485-3492.

    Article  Google Scholar 

  13. R.Y. Liu, X. Wang, J.S. Zhang, X.M. Wang, J. Nucl. Mater., 327 (2004) 194-201.

    Article  Google Scholar 

  14. T. Usami, M. Kurata, T. Inoue, H.E. Sims, S.A. Beetham, J.A. Jenkins, J. Nucl. Mater., 300 (2002) 15-26.

    Article  Google Scholar 

  15. W. Park, J.-K. Kim, J.-M. Hur, E.-Y. Choi, H.S. Im, S.-S. Hong, J. Nucl. Mater., 432 (2013) 175-181.

    Article  Google Scholar 

  16. S.M. Jeong, H.-S. Shin, S.-H. Cho, J.-M. Hur, H.S. Lee, Electrochim. Acta, 54 (2009) 6335-6340.

    Article  Google Scholar 

  17. F. Colom, A. de la Plaza, J. Electroanal. Chem. Interfacial Electrochem., 290 (1990) 105-118.

    Article  Google Scholar 

  18. J. Ruppert, K.S. Raja, and M. Misra: in Int. Congr. Adv. Nucl. Power Plants, San Diego, 2010, pp. 1831–38.

  19. J.-M. Hur, S.M. Jeong, H. Lee, Electrochem. Commun., 12 (2010) 706-709.

    Article  Google Scholar 

  20. M.K.Y. Sakamura, and Tadashi Inoue, J. Electrochem. Soc., 153 (2006) D31 - D39.

    Article  Google Scholar 

  21. M. Iizuka, Y. Sakamura, T. Inoue, J. Nucl. Mater., 359 (2006) 102-113.

    Article  Google Scholar 

  22. M. Misra, K.S. Raja, J. Ruppert, ECS Trans., 33 (2010) 181-192.

    Article  Google Scholar 

  23. G. Inzelt: in Handbook of Reference Electrodes, G. Inzelt, A. Lewenstam, and F. Scholz, eds., Springer, Berlin Heidelberg, 2013, pp. 331-32.

  24. T.B. Joseph, N. Sanil, L. Shakila, K.S. Mohandas, K. Nagarajan, Electrochim. Acta, 139 (2014) 394-400.

    Article  Google Scholar 

  25. S.A. Kuznetsov, M. Gaune-Escard, J. Nucl. Mater., 389 (2009) 108-114.

    Article  Google Scholar 

  26. J. Indacochea, J. Smith, J. Mater. Res., 14 (1999) 1990-1995.

    Article  Google Scholar 

  27. A. Ravi Shankar, S. Mathiya, K. Thyagarajan, U. Kamachi Mudali, Metall. Mater. Trans. A, 41 (2010) 1815-1825.

    Article  Google Scholar 

  28. S. Vandarkuzhali, N. Gogoi, S. Ghosh, B. Prabhakara Reddy, K. Nagarajan, Electrochim. Acta, 59 (2012) 245-255.

    Article  Google Scholar 

  29. U. Opara Krašovec, A. Šurca Vuk, B. Orel, Electrochim. Acta, 46 (2001) 1921-1929.

    Article  Google Scholar 

  30. B.V.R. Chowdari, K.L. Tan, and W.T. Chia: Solid State Ionics, 53–56, 1992, vol. Part 2, pp. 1172–78.

  31. C.G. Granqvist: Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, 2002.

  32. S.-H. Lee, M.J. Seong, H.M. Cheong, E. Ozkan, E.C. Tracy, S.K. Deb, Solid State Ionics, 156 (2003) 447-452.

    Article  Google Scholar 

  33. T. Kubo, Y. Nishikitani: J. Electrochem. Soc., 145 (1998) 1729–1734.

    Article  Google Scholar 

  34. A.H. Ahmad, A.K. Arof, Ionics, 10 (2004) 200-205.

    Article  Google Scholar 

  35. J. Światowska-Mrowiecka, S. de Diesbach, V. Maurice, S. Zanna, L. Klein, E. Briand, I. Vickridge, P. Marcus: J. Phys. Chem. C, 2008, vol. 112 pp. 11050–11058.

    Google Scholar 

  36. J.C. Dupin, D. Gonbeau, I. Martin-Litas, P. Vinatier, A. Levasseur, J. Electron Spectrosc. Relat. Phenom., 120 (2001) 55-65.

    Article  Google Scholar 

  37. P. Delichere, P. Falaras,and A. Hugot-Le Goff: Thin Solid Films, 1988, vol. 161, pp. 47–58.

  38. Z.P. Pai, D.I. Kochubey, P.V. Berdnikova, V.V. Kanazhevskiy, I.Y. Prikhod’ko, Y.A. Chesalov, J. Mol. Catal. A: Chem., 332 (2010) 122-127.

    Article  Google Scholar 

  39. T.H. K. Kamata, S. Kuzua, N. Mizuno, J. Am. Chem. Soc., 131 (2009) 6997-7004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dev Chidambaram.

Additional information

Manuscript submitted May 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merwin, A., Chidambaram, D. Alternate Anodes for the Electrolytic Reduction of UO2 . Metall Mater Trans A 46, 536–544 (2015). https://doi.org/10.1007/s11661-014-2633-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2633-2

Keywords

Navigation