Skip to main content

Advertisement

Log in

Ignition Desensitization of PBX via Aluminization

  • Symposium: Dynamic Behavior of Materials VI
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The ignition behavior of aluminized HMX/Estane PBX under impact loading is analyzed through meso-scale simulations which account for constituent elasticity, viscoelasticity, elasto-viscoplasticity, fracture, internal contact, frictional heating, and heat conduction. The analyses involve explicit tracking of hotspot development and focuses on the probability of ignition, accounting for stochastic variations in microstructures which have HMX grain sizes ranging from 50 to 400 μm, binder-grain bonding strength of 35 MPa, and binder-grain interface bonding energy on the order of 81 J/m2. For the microstructure configuration studied, it is found that aluminization with particles 50 μm in diameter delays the initiation of chemical reaction in the material. The mean time to ignition (t 50) for cases with 6 to 18 pct Al by volume is 1 to 1.7 μs longer (24 to 60 pct delay) as compared to that for the corresponding unaluminized PBX. To understand the mechanisms leading to the ignition delay, the differences in overall internal stresses, dissipations due to fracture and inelasticity, and hotspot field characteristics are quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. P. Vadhe, R. B. Pawar, R. K. Sinha, S. N. Asthana, and A. S. Rao: Combust. Explos. Shock Waves, vol. 44, pp. 461–77, 2008.

    Article  Google Scholar 

  2. Y. Horie: in Personal Communication with J. Leathy of Leathy Consulting, J. Leathy of Leathy Consulting ed.

  3. G. Antić and V. Džingalašević: Sci. Tech. Rev., vol. 56, pp. 52–58, 2006.

    Google Scholar 

  4. V. Prakash, V. K. Phadke, R. K. Sinha, and H. Singh: Def. Sci. J., vol. 54, pp. 475–82, 2004.

    Article  Google Scholar 

  5. M. Radwan: in 32nd Int’l Annual Conference of ICT, Karlsruhe, Germany, p. 44, 2001.

  6. A. Barua, Y. Horie, and M. Zhou: J. Appl. Phys., vol. 111, 054902, 2012.

    Article  Google Scholar 

  7. A. Barua, Y. Horie, and M. Zhou: Proc. R Soc. a-Math. Phys. Eng. Sci., vol. 468, pp. 3725–44, 2012.

    Article  Google Scholar 

  8. A. Barua, S. Kim, Y. Horie, and M. Zhou: J. Appl. Phys., vol. 113, 064906, 2013.

    Article  Google Scholar 

  9. A. Barua, S. Kim, Y. Horie, and M. Zhou: J. Appl. Phys., vol. 113, 184907, 2013.

    Article  Google Scholar 

  10. A. Barua and M. Zhou: Modell. Simul. Mater. Sci. Eng., vol. 19, 055001, 2011.

    Article  Google Scholar 

  11. W. A. Trzcinski, S. Cudzilo, and L. Szymanczyk: Propellants Explos. Pyrotech., vol. 32, pp. 392–400, 2007.

    Article  Google Scholar 

  12. M. F. Gogulya, A. Y. Dolgoborodov, and M. A. Brazhnikov: Chem. Phys. Rep., vol. 17, pp. 51–54, 1998.

    Google Scholar 

  13. A. S. Kumar, V. B. Rao, R. K. Sinha, and A. S. Rao: Propellants Explos., Pyrotech., vol. 35, pp. 359–64, 2010.

    Article  Google Scholar 

  14. S. Kim, A. Barua, Y. Horie, and M. Zhou: J. Appl. Phys., vol. 115, 174902, 2014.

    Article  Google Scholar 

  15. Y. L. Zhu, H. Huang, H. Ren, and Q. J. Jiao: J. Energ. Mater., vol. 31, pp. 178–91, 2013.

    Article  Google Scholar 

  16. A. M. Grishkin, L. V. Dubnov, V. Y. Davidov, Y. A. Levshina, and T. N. Mikhailova: Combust. Explos. Shock Waves, vol. 29, pp. 239–45, 1993.

    Article  Google Scholar 

  17. C. G. Rumchik and J. L. Jordan: AIP Conf. Proc., vol. 955, pp. 795–98, 2007.

    Google Scholar 

  18. D. J. Benson and P. Conley: Modell. Simul. Mater. Sci. Eng., vol. 7, pp. 333–54, 1999.

    Article  Google Scholar 

  19. M. Zhou, A. Needleman, and R. J. Clifton: J. Mech. Phys. Solids, vol. 42, pp. 423–58, 1994.

    Article  Google Scholar 

  20. N.S. Brar, V.S. Joshi, and B.W. Harris: Shock Compress. Condens. Matter, Pts 1 and 2, 2009, vol. 1195, pp. 945–48.

  21. J. Liu, M. K. Chaudhury, D. H. Berry, J. E. Seebergh, J. H. Osborne, and K. Y. Blohowiak: J. Adhes. Sci. Technol., vol. 20, pp. 277–305, 2006.

    Article  Google Scholar 

  22. J. Schultz, A. Carré, and C. Mazeau: Int. J. Adhes. Adhes., vol. 4, pp. 163–68, 1984.

    Article  Google Scholar 

  23. V. Sundararaman and S.K. Sitaraman: J. Electron. Packag., vol. 121, pp. 275–81, 1999.

    Article  Google Scholar 

  24. C. M. Tarver, S. K. Chidester, and A. L. Nichols: J. Phys. Chem., vol. 100, pp. 5794–99, 1996.

    Article  Google Scholar 

  25. T. L. J. John F. Moxnes, Erik Unneberg: Adv. Stud. Theor. Phys., vol. 7, pp. 1051–69, 2013.

    Google Scholar 

  26. Y. Li and M. Zhou: J. Mech. Phys. Solids, vol. 61, pp. 472–88, 2013.

    Article  Google Scholar 

  27. K. Terao: Irreversible Phenomena: Ignitions, Combustion and Detonation Waves (Chap. 3), Springer, New York, 2007.

  28. M. F. Gogulya, M. N. Makhov, A. Y. Dolgoborodov, M. A. Brazhnikov, V. I. Arkhipov, and V. G. Shchetinin: Combust. Explos. Shock Waves, vol. 40, pp. 445–57, 2004.

    Article  Google Scholar 

  29. L. Orth-Farrell and H. Krier: Combust. Sci. Technol., vol. 161, pp. 69–88, 2000.

    Article  Google Scholar 

  30. S. Chakravarthy, K. A. Gonthier, and R. Panchadhara: Modell. Simul. Mater. Sci. Eng., vol. 21, 055016, 2013.

    Article  Google Scholar 

  31. J. K. Dienes, Q. H. Zuo, and J. D. Kershner: J. Mech. Phys. Solids, vol. 54, pp. 1237–75, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the Defense Threat Reduction Agency (DTRA) and Air Force Research Laboratory (AFRL) at the Eglin AFB (DISTRIBUTION A. Public release, distribution unlimited. 96ABW-2014-0122). Calculations are carried out on parallel computers at DPRL at Georgia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhou.

Additional information

Manuscript submitted on April 13, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Horie, Y. & Zhou, M. Ignition Desensitization of PBX via Aluminization. Metall Mater Trans A 46, 4578–4586 (2015). https://doi.org/10.1007/s11661-014-2605-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2605-6

Keywords

Navigation