Skip to main content
Log in

A Numerical Method for Microstructure Generation of a Binary Aluminum Alloy and Study of Its Mechanical Properties Using the Finite Element Method

  • Symposium: Multi-Scale Modeling of Microstructure Deformation in Material Processing
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A numerical method for the generation of the microstructure of a binary aluminum copper alloy is presented. This method is based on the repeated addition of some basic grain shapes into a representative volume element. Depending of the orientation of adjacent grains, different type of grain boundaries can be formed. The primary and secondary phases are distinguishable in our model and have distinct properties, reflecting the heterogeneous nature of the microstructure. The digital microstructure was then transformed into a finite element model. Using the finite element software ABAQUS, the stress distribution inside our heterogeneous material model has been studied and its mechanical properties have been found. That also makes possible to study and to visualize the cracks generated during the loading of the material where the local stress was sufficiently high. As a result of these analyses, the elastic modulus of such a heterogeneous domain and the effect of crack formation on ductility were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Phillips, Current Opinion in Solid State & Materials Science, 1998, vol. 3 (6), pp. 526-532.

    Article  Google Scholar 

  2. D. Raabe, Computational materials science: the simulation of materials microstructures and properties, 1st ed., p. 233, Wiley-VCH, New York, 1998.

    Book  Google Scholar 

  3. K. W. Mahin, K. Hanson, and J. W. Jr. Morris, Acta Metall., 1980, vol. 28, pp. 443-453.

    Article  Google Scholar 

  4. H.J. Frost, J. Whang, and C.V. Thompson: in Proc. 7th RISØ International Symposium on Materials Science, N. Hansen, D. Juul Jensen, T Leffers, and B. Ralph, eds., RJSØ National Laboratory, Roskilde, 1986, p. 315.

  5. F. J. Humphreys, Acta Materialia, 1997, Vol. 45 (10), pp. 4231-4240.

    Article  Google Scholar 

  6. F. J. Humphreys, Acta Materialia, 1997, Vol. 45 (12), pp. 5031-5039.

    Article  Google Scholar 

  7. D. Juul Jensen, Scripta Metall. Mater., 1992, vol. 27, pp. 1551-56.

    Article  Google Scholar 

  8. D. Juul Jensen,. Met. Mater. Trans. A, 1997, vol. 28, pp.15-25.

    Article  Google Scholar 

  9. Y.Z. Wang and L.Q. Chen: Simulation of Microstructure Evolution, Methods in Materials Research, E.N. Kaufmann, R. Abbaschian, A. Bocarsly, et al., eds., Wiley, New York, NY, 1999.

  10. L. Madej L. Rauch, K. Perzynski, P. Cybulka, Archives of Civil and Mechanical Engineering, 2011, vol. 11, pp. 661-679.

    Article  Google Scholar 

  11. L. Madej, L. Sieradzki, M. Sitko, K. Perzynski, K. Radwanski, R. Kuziak, Computational Materials Science, 2013, vol. 77, pp. 172-181.

    Article  Google Scholar 

  12. M. Ortiz, R. Phillips, Adv. Appl. Mech. 1998, vol. 36, pp. 1-79.

    Article  Google Scholar 

  13. P. R. Dawson, E. B. Marin, Adv. Appl. Mech. 1998, vol. 34, pp. 77-169.

    Article  Google Scholar 

  14. A. J. Beaudoin, H. Mecking, U. F. Kocks, Philos. Mag. A, 1996, vol. 73, pp.1503–1517.

    Article  Google Scholar 

  15. R. Becker, Acta Metall., 1991, vol. 39, pp. 1211-1230.

    Article  Google Scholar 

  16. P.E. McHugh, R.J. Asaro, and C.F. Shih, Acta Metall., 1993, vol. 41, pp 1461–76.

    Article  Google Scholar 

  17. W. Kurz, D.J. Fischer, Fundamentals of solidification, 3rd ed., p. 118, Trans Tech, Switzerland, 1992.

    Google Scholar 

  18. D. Larouche, CALPHAD, Vol. 31, 2007, pp. 490-504.

    Article  Google Scholar 

  19. B. Dutta, O. Pompe, M. Rettenmayr, Materials Science & Technology, Vol. 20, 2004, pp. 1011-1018.

    Article  Google Scholar 

  20. J. E. Bresenham, IBM Systems Journal, 1965, vol. 4 (1), pp. 25–30.

    Article  Google Scholar 

  21. G.C. Hasson and C. Goux, Scripta Metall., 1971, vol. 5, pp. 889-894.

    Article  Google Scholar 

  22. V. Mathier, A. Jacot, M. Rappaz, Modelling Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 479–490.

    Article  Google Scholar 

  23. M. Rappaz, A. Jacot, W.J. Boettinger, Metall. Mater. Trans. A, 2003, vol. 34, pp. 467–479.

    Article  Google Scholar 

  24. H. K. Kamga, D. Larouche, M. Bournane, A. Rahem, Inter. Journal of Cast Metals Research, 2012, vol. 25 (1), pp. 15-25.

    Article  Google Scholar 

  25. S. Vernède, M. Rappaz, Acta Materialia, Vol. 55, 2007, pp. 1703-1710.

    Article  Google Scholar 

  26. F. R. Eshelman, J. F. Smith, J. Appl. Phys., 1978, vol. 49, pp. 3283–3288.

    Article  Google Scholar 

  27. D. Levasseur, D. Larouche, Materials Science and Engineering A, 2011, vol. 528, pp. 4413–4421.

    Article  Google Scholar 

  28. M. Kutz, “Handbook of Materials Selection”, John Wiley & Sons, Inc., New York, 2002.

    Book  Google Scholar 

  29. M. Tiryakioglu, J. Campbell, N.D. Alexopoulos, Materials Science and Engineering A, 2009, vol. 506, pp. 23-26.

    Article  Google Scholar 

  30. ABAQUS 6.12 Documentations, ABAQUS Analysis User’s Manual, Section 24.2.2, Dassault Systèmes, 2012.

  31. W. F. Smith, “Foundations of Materials Science and Engineering”, 2nd ed, McGraw‐Hill, Inc., New York, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Sharifi.

Additional information

Manuscript submitted January 24, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, H., Larouche, D. A Numerical Method for Microstructure Generation of a Binary Aluminum Alloy and Study of Its Mechanical Properties Using the Finite Element Method. Metall Mater Trans A 45, 5866–5875 (2014). https://doi.org/10.1007/s11661-014-2446-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2446-3

Keywords

Navigation