Skip to main content

Advertisement

Log in

Effect of Nb and Nb5Si3 Powder Size on Microstructure and Fracture Behavior of an Nb-16Si Alloy Fabricated by Spark Plasma Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of Nb and Nb5Si3 powder sizes (Nb: 83.8, 37.4, 4.9 μm; Nb5Si3: 86.4, 43.6, 2.9 μm) on microstructure and fracture behavior of an Nb-16Si alloy fabricated by spark plasma sintering (SPS) was investigated. The results revealed that all as-sintered samples consisted of Nb and Nb5Si3 phases, with no new phases formed during SPS. The morphologies of the Nb and Nb5Si3 phases in the as-sintered samples depended on the original Nb and Nb5Si3 powder sizes. Large Nb5Si3 powders 86.4 and 43.6 μm in combination with Nb powder of described sizes resulted in an Nb matrix plus Nb5Si3 island biphase microstructure, which supplied excellent fracture toughness. The microstructure made from the finest Nb powder (4.9 μm) and the largest Nb5Si3 powder (86.4 μm) had a high fracture toughness of 12.4 MPa m1/2 through a mixed fracture mechanism of dimple, tear, and cleavage from the small Nb grains. When the Nb5Si3 powder size was decreased to 2.9 μm, the sample tended to form an Nb5Si3 matrix plus Nb island biphase microstructure, which exhibited a poor fracture toughness value of between 5.6 and 8.0 MPa m1/2 due to the crack propagation mainly within the brittle Nb5Si3 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.P. Bewlay, J.J. Lewandowksi, M.R. Jackson, JOM, 1997, vol. 49(8), pp. 44-45.

    Article  Google Scholar 

  2. J.B. Sha, H. Hirai, H. Ueno, T. Tabaru, A. Kitahara, S. Hanada, Metall. Mater. Trans. A, 2003, 34A, pp. 85-94.

    Article  Google Scholar 

  3. P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, JOM, 1996, vol. 48, pp. 33-38.

    Article  Google Scholar 

  4. M.R. Jackson, B.P. Bewlay, and J.C. Zhao: American Patent: US 0066578, 2003.

  5. D.M. Shah, D.L. Anton, D.P. Pope, and S. Chin: Mater. Sci. Eng. A, 1995, vols. 192–193A, pp. 658–72.

  6. J.B. Sha, H. Hirai, H. Ueno, T. Tabaru, A. Kitahara, S. Hanada, Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2861-71.

    Article  Google Scholar 

  7. K.S. Chan, Mater. Sci. Eng. A, 2002, vol. 329–331A, pp. 513–22.

    Article  Google Scholar 

  8. B.P. Bewlay, M.R. Jackson, H.A. Lipsitt, Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3801-08.

    Article  Google Scholar 

  9. J.B. Sha, C.Y. Yang, J. Liu, Scripta Mater. 2010, vol. 62, pp. 859-62.

    Article  Google Scholar 

  10. M.R. Jackson, B.P. Bewlay, R.G. Rowe, D.W. Skelly, H.A. Lipsitt, JOM, 1996, vol. 48, pp. 39-44.

    Article  Google Scholar 

  11. M.G. Mendiratta, D.M. Dimiduk, Metall. Trans. A, 1993, vol. 24A, pp. 501-04.

    Article  Google Scholar 

  12. J.L. Yu, K.F. Zhang, Z.K. Li, X. Zheng, G.F. Wang, R. Bai, Scripta Mater., 2009, vol. 61, pp. 620-23.

    Article  Google Scholar 

  13. T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science, 2011, vol. 331, pp. 1587-90.

    Article  Google Scholar 

  14. Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma, Nature, 2012, vol. 419, pp. 912-15.

    Article  Google Scholar 

  15. T.B. Massalski, ed.: Binary Alloy Phase Diagrams, ASM, Materials Park, OH, 1990, vol. 1, p. 1511.

  16. Z. Li, L.M. Peng, Acta Mater., 2007, vol. 55, pp. 6573-85.

    Article  Google Scholar 

  17. M.G. Mendiratta, J.J. Lewandowski, D.M. Dimiduk, Metall. Trans. A, 1991, vol. 22A, pp. 1573-83.

    Article  Google Scholar 

  18. W.Y. Kim, H. Tanaka, A. Kasama, S. Hanada, Intermetallics, 2001, vol. 9, pp. 827–34.

    Article  Google Scholar 

  19. B.P. Bewlay, H.A. Lipsitt, M.R. Jackson, W.J. Reeder, J.A. Sutliff (1995) Mater. Sci. Eng. A, 192–193A, pp. 534-43.

    Article  Google Scholar 

  20. D.L. Davidson, K.S. Chan, D.L. Anton (1996) Metall. Mater. Trans. A, vol. 27A, pp. 3007-3018.

    Article  Google Scholar 

  21. M.G. Mendiratta, J.J. Lewandowski, D.M. Dimiduk, Metall. Trans. A, 1991, 22A, pp. 1573-83.

    Article  Google Scholar 

  22. X.L. Wang, G.F. Wang, K.F. Zhang, Mater. Sci. Eng. A, 2010, vol. 527, pp. 3253-58.

    Article  Google Scholar 

  23. R.W. Armstrong, Eng. Fract. Mech., 1987, vol. 28(5-6), pp. 529–38.

    Article  Google Scholar 

  24. W. Liu, Y.M. Fu, J.B. Sha, Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2319-30.

    Article  Google Scholar 

  25. R.W. Cahn and P. Haasen: Physical Metallurgy, vol. 3, 4th, revised and enhanced ed., North-Holland, Amsterdam, 1996, pp. 2207-87.

  26. S. Jin, J.W. Morris, V.F. Zackay, Metall. Trans. A, 1975, vol. 6, pp 141-49.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the support from the National Natural Sciences Foundation of P. R. China (51071009 and 5171005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangbo Sha.

Additional information

Manuscript submitted October 16, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Sha, J. Effect of Nb and Nb5Si3 Powder Size on Microstructure and Fracture Behavior of an Nb-16Si Alloy Fabricated by Spark Plasma Sintering. Metall Mater Trans A 45, 4316–4323 (2014). https://doi.org/10.1007/s11661-014-2378-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2378-y

Keywords

Navigation