Skip to main content

Advertisement

Log in

Pharmacological Effects of Botanical Drugs on Myocardial Metabolism in Chronic Heart Failure

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Although there have been significant advances in the treatment of heart failure in recent years, chronic heart failure remains a leading cause of cardiovascular disease-related death. Many studies have found that targeted cardiac metabolic remodeling has good potential for the treatment of heart failure. However, most of the drugs that increase cardiac energy are still in the theoretical or testing stage. Some research has found that botanical drugs not only increase myocardial energy metabolism through multiple targets but also have the potential to restore the balance of myocardial substrate metabolism. In this review, we summarized the mechanisms by which botanical drugs (the active ingredients/formulas/Chinese patent medicines) improve substrate utilization and promote myocardial energy metabolism by activating AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs) and other related targets. At the same time, some potential protective effects of botanical drugs on myocardium, such as alleviating oxidative stress and dysbiosis signaling, caused by metabolic disorders, were briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 2017;113:411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McGranaghan P, Kirwan JA, Garcia-Rivera MA, et al. Lipid metabolite biomarkers in cardiovascular disease: discovery and biomechanism translation from human studies. Metabolites 2021;11:621–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hao P, Jiang F, Cheng J, et al. Traditional Chinese medicine for cardiovascular disease: evidence and potential mechanisms. J Am Coll Cardiol 2017;69:2952–2966.

    Article  PubMed  Google Scholar 

  4. Selvaraj S, Kelly DP, Margulies KB. Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation 2020;141:1800–1812.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lopaschuk GD, Karwi QG, Tian R, et al. Cardiac energy metabolism in heart failure. Circ Res 2021;128:1487–1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016;18:891–975.

    Article  PubMed  Google Scholar 

  7. Li XT, Bi XK. Integrated control of fatty acid metabolism in heart failure. Metabolites 2023;13:615–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lupón J, Gavidia-Bovadilla G, Ferrer E, et al. Heart failure with preserved ejection fraction infrequently evolves toward a reduced phenotype in long-term survivors. Circ Heart Fail 2019;12:e005652–005660.

    Article  PubMed  Google Scholar 

  9. Chioncel O, Lainscak M, Seferovic PM, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 2017;19:1574–1585.

    Article  CAS  PubMed  Google Scholar 

  10. Iorio A, Senni M, Barbati G, et al. Prevalence and prognostic impact of non-cardiac co-morbidities in heart failure outpatients with preserved and reduced ejection fraction: a community-based study. Eur J Heart Fail 2018;20:1257–1266.

    Article  PubMed  Google Scholar 

  11. Ren J, Wu NN, Wang S, et al. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021;101:1745–1807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Capone F, Id O, Sotomayor-Flores C, et al. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res 2023;118:3556–3575.

    Article  PubMed  Google Scholar 

  13. Fillmore N, Levasseur JL, Fukushima A, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med 2018;24:3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Voros G, Ector J, Garweg C, et al. Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling. Circ Heart Fail 2018;11:e004953–004961.

    Article  CAS  PubMed  Google Scholar 

  15. Deng Y, Xie M, Li Q, et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ Res 2021;128:232–245.

    Article  CAS  PubMed  Google Scholar 

  16. Tromp J, Khan MAF, Mentz RJ, et al. Biomarker profiles of acute heart failure patients with a mid-range ejection fraction. JACC Heart Fail 2017;5:507–517.

    Article  PubMed  Google Scholar 

  17. Gohar A, Chong JPC, Liew OW, et al. The prognostic value of highly sensitive cardiac troponin assays for adverse events in men and women with stable heart failure and a preserved vs. reduced ejection fraction. Eur J Heart Fail 2017;19:1638–1647.

    Article  CAS  PubMed  Google Scholar 

  18. Rastogi A, Novak E, Platts AE, et al. Epidemiology, pathophysiology and clinical outcomes for heart failure patients with a mid-range ejection fraction. Eur J Heart Fail 2017;19:1597–1605.

    Article  CAS  PubMed  Google Scholar 

  19. Kelley DE, Goodpaster B, Wing RR, et al. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 1999;277:E1130–E1141.

    CAS  PubMed  Google Scholar 

  20. Galgani JE, Fernández-Verdejo R. Pathophysiological role of metabolic flexibility on metabolic health. Obesity Rev 2021;22:e13131–e13144.

    Article  CAS  Google Scholar 

  21. Chen Z, Jin ZX, Cai J, et al. Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy. J Mol Med (Berl) 2022;100:1721–1739.

    Article  CAS  PubMed  Google Scholar 

  22. Chang X, Liu R, Li R, et al. Molecular mechanisms of mitochondrial quality control in ischemic cardiomyopathy. Int J Biol Sci 2023;19:426–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hahn VS, Petucci C, Kim MS, et al. Myocardial metabolomics of human heart failure with preserved ejection fraction. Circulation 2023;147:1147–1161.

    Article  CAS  PubMed  Google Scholar 

  24. Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus. Circ Res 2019;124:121–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knutson AK, Williams AL, Boisvert WA, et al. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J Clin Invest 2021;131:e137557–e137568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Skogestad J, Aronsen JM, Tovsrud N, et al. Coupling of the Na+/K+-ATPase to Ankyrin B controls Na+/Ca2+ exchanger activity in cardiomyocytes. Cardiovasc Res 2020;116:78–90.

    Article  CAS  PubMed  Google Scholar 

  27. Fu QQ, Wei L, Sierra J, et al. Olfactory ensheathing cell-conditioned medium reverts A β (25-35)-induced oxidative damage in SH-SY5Y cells by modulating the mitochondria-mediated apoptotic pathway. Cell Mol Neurobiol 2017;37:1043–1054.

    Article  CAS  PubMed  Google Scholar 

  28. Moon CM, Kim YH, Ahn YK, et al. Metabolic alterations in acute myocardial ischemia-reperfusion injury and necrosis using in vivo hyperpolarized [1-(13)C] pyruvate MR spectroscopy. Sci Rep 2019;9:18427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng T, Zhao X, Gu P, et al. Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2. Nature Commun 2022;13:5208–5221.

    CAS  Google Scholar 

  30. Ivashkiv LB. The hypoxia-lactate axis tempers inflammation. Nature Rev Immunol 2020;20:85–86.

    Article  CAS  Google Scholar 

  31. Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022;7:305–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cairns M, Joseph D, Essop MF. The dual role of the hexosamine biosynthetic pathway in cardiac physiology and pathophysiology. Fronti Endocrinol 2022;13:984342–984360.

    Article  Google Scholar 

  33. Peng G, Yan J, Chen L, et al. Glycometabolism reprogramming: implications for cardiovascular diseases. Prog Biophys Mol Biol 2023;179:26–37.

    Article  CAS  PubMed  Google Scholar 

  34. Correale M, Tricarico L, Croella F, et al. Novelties in the pharmacological approaches for chronic heart failure: new drugs and cardiovascular targets. Front Cardiovasc Med 2023;10:1157472–1157490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gormsen LC, Svart M, Thomsen HH, et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc 2017;6:005066–005076.

    Article  Google Scholar 

  36. Tataranni T, Piccoli C. Dichloroacetate (DCA) and cancer: an overview towards clinical applications. Oxid Med Cell Longev 2019;2019:8201079–8201092.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Meng L, Wu G. Recent advances in small molecules for improving mitochondrial disorders. Royal Soc Chem Adv 2023;13:20476–20485.

    CAS  Google Scholar 

  38. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 2018;19:121–135.

    Article  CAS  PubMed  Google Scholar 

  39. Shu H, Hang W, Peng Y, et al. Trimetazidine attenuates heart failure by improving myocardial metabolism via AMPK. Front Pharmacol 2021;12:707399–707414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kong HL, Hou AJ, Chen XM, et al. Improving effects of ginsenoside Rb1 on glucose metabolism in cardiomyocytes under hypoxia by hypoxia-inducible factor 1 α. Chin J Physiol 2016;9:1621–1626.

    Google Scholar 

  41. Kong HL, Hou AJ, Liu NN, et al. The effects of ginsenoside Rb1 on fatty acid beta-oxidation, mediated by AMPK, in the failing heart. Iran J Basic Med Sci 2018;21:731–737.

    PubMed  PubMed Central  Google Scholar 

  42. Cheng W, Wang L, Yang T, et al. Qili Qiangxin Capsules optimize cardiac metabolism flexibility in rats with heart failure after myocardial infarction. Front Physiol 2020;11:805–819.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Fu M, Wang J, et al. Qili Qiangxin Capsules improves cardiac function through regulating energy metabolism via HIF-1alpha-dependent and independent mechanisms in heart failure rats after acute myocardial infarction. Biomed Res Int 2020;2020:1276195–1276210.

    PubMed  PubMed Central  Google Scholar 

  44. Morciano G, Boncompagni C, Ramaccini D, et al. Comprehensive analysis of mitochondrial dynamics alterations in heart diseases. Int J Mol Sci 2023;24:3414–3438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu H, Zhang F, Yan P, et al. LARP7 protects against heart failure by enhancing mitochondrial biogenesis. Circulation 2021;143:2007–2022.

    Article  CAS  PubMed  Google Scholar 

  46. Liu L, Li Y, Wang J, et al. Mitophagy receptor FUNDC1 is regulated by PGC-1 α /NRF1 to fine tune mitochondrial homeostasis. EMBO Reports 2021;22:e50629–e50648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu Y, Wu J, Sun Y, et al. Qili Qiangxin Capsules prevents right ventricular remodeling by inhibiting apoptosis and improving metabolism reprogramming with pulmonary arterial hypertension. Am J Translat Res 2020;12:5655–5669.

    CAS  Google Scholar 

  48. Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021;18:809–823.

    Article  CAS  PubMed  Google Scholar 

  49. Kaimoto S, Hoshino A, Ariyoshi M, et al. Activation of PPAR- α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am J Physiol Heart Circ Physiol 2017;312:H305–h313.

    Article  PubMed  Google Scholar 

  50. Wickramasinghe NM, Sachs D, Shewale B, et al. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem 2022;29:559–576.

    CAS  Google Scholar 

  51. Tang B, Zhang JG, Tan HY, et al. Astragaloside IV inhibits ventricular remodeling and improves fatty acid utilization in rats with chronic heart failure. Biosci Rep 2018;38:BSR20171036–20171046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dong Z, Zhao P, Xu M, et al. Astragaloside IV alleviates heart failure via activating PPARalpha to switch glycolysis to fatty acid beta-oxidation. Sci Rep 2017;7:2691–2705.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang P, Xu S, Xu J, et al. Elevated MCU expression by CaMK II δ B limits pathological cardiac remodeling. Circulation 2022;145:1067–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lo SH, Hsu CT, Niu HS, et al. Ginsenoside Rh2 improves cardiac fisbrosis via PPAR S -STAT3 signaling in type 1-like diabetic rats. Int J Mol Sci 2017;18:1364–1382.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Peng S, Wang Y, Zhou Y, et al. Rare ginsenosides ameliorate lipid overload-induced myocardial insulin resistance via modulating metabolic flexibility. Phytomedicine 2019;58:152745–152752.

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto T, Sano M. Deranged myocardial fatty acid metabolism in hart failure. Int J Mol Sci 2022;23:996-1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bekhite M, Gonzalez-Delgado A, Hubner S, et al. The role of ceramide accumulation in human induced pluripotent stem cell-derived cardiomyocytes on mitochondrial oxidative stress and mitophagy. Free Radic Biol Med 2021;167:66–80.

    Article  CAS  PubMed  Google Scholar 

  58. Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the Mmyocardium. J Am Coll Cardiol 2018;71:2360–2372.

    Article  CAS  PubMed  Google Scholar 

  59. Nishi H, Higashihara T, Inagi R. Lipotoxicity in kidney, heart, and skeletal muscle dysfunction. Nutrients 2019;11:1664–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Opazo-Ríos L, Mas S, Marín-Royo G, et al. Lipotoxicity and diabetic nephropathy: novel mechanistic insights and therapeutic opportunities. Int J Mol Sci 2020;21:2632–2661.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Leggat J, Bidault G, Vidal-Puig A. Lipotoxicity: a driver of heart failure with preserved ejection fraction? Clin Sci (Lond) 2021;135:2265–2283.

    Article  CAS  PubMed  Google Scholar 

  62. Schiattarella GG, Rodolico D, Hill JA. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc Res 2021;117:423–434.

    Article  CAS  PubMed  Google Scholar 

  63. Chen YT, Song Y, Lu LH. Fuzi polysaccharide inhibits vascular smooth muscle cell calcification via ceramide signaling. J Sun Yat-Sen Univ (Med Sci) 2020;41:69–75.

    CAS  Google Scholar 

  64. Zhu Y, Hart GW. Targeting O-GlcNAcylation to develop novel therapeutics. Mol Aspects Med 2021;79:100885–100898.

    Article  CAS  PubMed  Google Scholar 

  65. Umapathi P, Mesubi OO, Banerjee PS, et al. Excessive O-GlcNAcylation causes heart failure and sudden death. Circulation 2021;143:1687–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jin L, Gao F, Jiang T, et al. Hyper-O-GlcNAcylation impairs insulin response against reperfusion-induced myocardial injury and arrhythmias in obesity. Biochem Biophys Res Commun 2021;558:126–133.

    Article  CAS  PubMed  Google Scholar 

  67. Cao H, Hu Y, Zhu X, et al. O-GlcNAc transferase affects the signal transduction of β 1 adrenoceptor in adult rat cardiomyocytes by increasing the O-GlcNAcylation of β 1 adrenoceptor. Biochem Biophys Res Commun 2020;528:71–77.

    Article  CAS  PubMed  Google Scholar 

  68. Kaleem A, Javed S, Rehman N, et al. Phosphorylated and O-GlcNAc modified IRS-1 (Ser1101) and -2 (Ser1149) contribute to human diabetes type II. Protein Pept Lett 2021;28:333–339.

    Article  CAS  PubMed  Google Scholar 

  69. Nakagawa T, Furukawa Y, Hayashi T, et al. Augmented O-GlcNAcylation attenuates intermittent hypoxia-induced cardiac remodeling through the suppression of NFAT and NF- K B activities in mice. Hypertens Res 2019;42:1858–1871.

    Article  CAS  PubMed  Google Scholar 

  70. He H, Mulhern RM, Oldham WM, et al. L-2-Hydroxyglutarate protects against cardiac injury via metabolic remodeling. Circ Res 2022;131:562–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tran DH, Wang ZV. Glucose metabolism in cardiac hypertrophy and heart failure. J Am Heart Assoc 2019;8:012673–012691.

    Article  Google Scholar 

  72. Shi JJ, Liu HF, Hu T, et al. Danggui Shaoyao San improves cognitive impairment through inhibiting O-GlcNAc-modification of estrogen alpha receptor in female db/db mice. J Ethnopharmacol 2021;281:114562–114573.

    Article  CAS  PubMed  Google Scholar 

  73. Gélinas R, Mailleux F, Dontaine J, et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nature Commun 2018;9:374–390.

    Article  Google Scholar 

  74. Collins HE, Chatham JC. Regulation of cardiac O-GlcNAcylation: more than just nutrient availability. Biochim Biophys Acta Mol Basis Dis 2020;1866:165712–165734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abu Shelbayeh O, Arroum T, Morris S, et al. PGC-1 α is a master regulator of mitochondrial lifecycle and ROS stress response. Antioxidants (Basel, Switzerland) 2023;12:1075–1098.

    CAS  PubMed  Google Scholar 

  76. Wang W, Zhang F, Xia Y, et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 2016;311:H1160–H1169.

    Article  PubMed  Google Scholar 

  77. Biswas D, Duffley L, Pulinilkunnil T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J 2019;33:8711–8731.

    Article  CAS  PubMed  Google Scholar 

  78. Wang SM, Ye LF, Wang LH. Shenmai injection improves energy metabolism in patients with heart failure: a randomized controlled trial. Front Pharmacol 2020;11:459–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tao H, Yang X, Wang W, et al. Regulation of serum lipidomics and amino acid profiles of rats with acute myocardial ischemia by Salvia miltiorrhiza and Panax notoginseng herb pair. Phytomedicine 2020;67:153162–153171.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hu YX and Shang JJ conceived the structure of this paper; Wang Z and Lai XL collected and organized the references; Hu YX, Qu SL, Shang JJ, Wang Z, and Lai XL wrote the manuscript; Qiu SL and Shang JJ have made key comments to the article content; Hu YX, Wang Z, and Lai XL produced the tables and figures. All authors revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ju-ju Shang.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Supported by the National Key Research & Development Program (No. 2019YFC1708602)

Electronic Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Yx., Qiu, Sl., Shang, Jj. et al. Pharmacological Effects of Botanical Drugs on Myocardial Metabolism in Chronic Heart Failure. Chin. J. Integr. Med. 30, 458–467 (2024). https://doi.org/10.1007/s11655-023-3649-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3649-5

Keywords

Navigation