Skip to main content
Log in

Early planetary processes and light elements in iron-dominated cores

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

This paper discusses the latest research on the accretion and differentiation of terrestrial planets and multidisciplinary constraints on light elements in iron-dominated metallic cores. The classic four-stage model of terrestrial planet formation advocates slow and local accretion. Meanwhile, the pebble accretion model suggests fast accretion for planets, while the Grand Tack model provides heterogeneous accretion mechanisms. Terrestrial planets and small interstellar bodies may have experienced at least some degree of partial melting due to the three primary energy sources (i.e., the decay of short-lived radioactive nuclides, the kinetic energy delivered by impacts, and the conversion of gravitational potential energy). Together with metal-silicate separation mechanisms, the magma ocean theory depicts the pattern of core formation in terrestrial planets. Several hypotheses have been proposed to explain the concentration of siderophile elements in the mantle, including the single-stage, continuous, and multistage core formation models, and the late-veneer model. Some light elements have been postulated in the core to account for Earth’s outer core density deficit. A plethora of constraints on the species and concentration of light elements have been put forward from the perspectives of cosmochemical and geochemical fingerprints, geophysical observations, mineral physics, numerical modeling, and theoretical prediction. Si and O may be the two leading candidates for Earth’s outer core light elements; however, it still remains an open question. S is another potential light element in Earth’s core, most likely with less than 2 wt%. Other light elements including H and C, may not exceed 1 wt% in the core. Moreover, the accretion and differentiation history would provide some clues to light elements in other terrestrial planetary cores. In principle, a larger heliocentric distance corresponds to accretion from more oxidized materials, leading to a higher S concentration in the Martian core. On the contrary, Mercury is close to the Sun and has accreted from more reduced materials, resulting in more Si in the core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright Walsh et al. (2011)

Fig. 3
Fig. 4

Modified from McDonough (2014)

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitta A (2012) Venus’ internal structure, temperature and core composition. Icarus 218:967–974

    Article  Google Scholar 

  • Allègre CJ, Poirier J-P, Humler E, Hofmann AW (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134:515–526

    Article  Google Scholar 

  • Altwegg K, Balsiger H, Bar-Nun A, Berthelier JJ, Bieler A, Bochsler P et al (2015) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347:1261952

    Article  Google Scholar 

  • Andrault D, Bolfan-Casanova N, Nigro GL, Bouhifd MA, Garbarino G, Mezouar M (2011) Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet Sci Lett 304:251–259

    Article  Google Scholar 

  • Andrault D, Pesce G, Bouhifd MA, Bolfan-Casanova N, Henot JM, Mezouar M (2014) Melting of subducted basalt at the core-mantle boundary. Science 344:892–895

    Article  Google Scholar 

  • Andreev BM, Magomedbekov EP (2001) Separation of hydrogen isotopes by chemical isotope exchange in systems involving metal and intermetallic compound hydrides. Sep Sci Technol 36:2027–2086

    Article  Google Scholar 

  • Antonangeli D, Ohtani E (2015) Sound velocity of hcp-Fe at high pressure: experimental constraints, extrapolations and comparison with seismic models. Prog Earth Planet Sci 2:1–11

    Article  Google Scholar 

  • Antonangeli D, Siebert J, Badro J, Farber DL, Fiquet G, Morard G, Ryerson FJ (2010) Composition of the Earth’s inner core from high-pressure sound velocity measurements in Fe–Ni–Si alloys. Earth Planet Sci Lett 295:292–296

    Article  Google Scholar 

  • Anzellini S, Dewaele A, Mezouar M, Loubeyre P, Morard G (2013) Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science 340:464–466

    Article  Google Scholar 

  • Armstrong LS, Hirschmann MM, Stanley BD, Falksen EG, Jacobsen SD (2015) Speciation and solubility of reduced C–O–H–N volatiles in mafic melt: implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets. Geochim Cosmochim Acta 171:283–302

    Article  Google Scholar 

  • Armstrong K, Frost DJ, McCammon CA, Rubie DC, Boffa Ballaran T (2019) Deep magma ocean formation set the oxidation state of Earth’s mantle. Science 365:903–906

    Article  Google Scholar 

  • Armytage R, Georg R, Savage P, Williams H, Halliday A (2011) Silicon isotopes in meteorites and planetary core formation. Geochim Cosmochim Acta 75:3662–3676

    Article  Google Scholar 

  • Badro J, Cote AS, Brodholt JP (2014) A seismologically consistent compositional model of Earth’s core. Proc Natl Acad Sci 111:7542–7545

    Article  Google Scholar 

  • Badro J, Brodholt JP, Piet H, Siebert J, Ryerson FJ (2015) Core formation and core composition from coupled geochemical and geophysical constraints. Proc Natl Acad Sci 112:12310–12314

    Article  Google Scholar 

  • Barboni M, Boehnke P, Keller B, Kohl IE, Schoene B, Young ED, McKeegan KD (2017) Early formation of the Moon 4.51 billion years ago. Sci Adv 3:e1602365

    Article  Google Scholar 

  • Birch F (1964) Density and composition of mantle and core. J Geophys Res 69:4377–4388

    Article  Google Scholar 

  • Blum J, Wurm G (2008) The growth mechanisms of macroscopic bodies in protoplanetary disks. Ann Rev Astron Astrophys 46:21–56

    Article  Google Scholar 

  • Bollard J, Connelly JN, Whitehouse MJ, Pringle EA, Bonal L, Jørgensen JK et al (2017) Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci Adv 3:e1700407

    Article  Google Scholar 

  • Bouhifd MA, Jephcoat AP (2003) The effect of pressure on partitioning of Ni and Co between silicate and iron-rich metal liquids: a diamond-anvil cell study. Earth Planet Sci Lett 209:245–255

    Article  Google Scholar 

  • Bouhifd MA, Jephcoat AP (2011) Convergence of Ni and Co metal–silicate partition coefficients in the deep magma-ocean and coupled silicon–oxygen solubility in iron melts at high pressures. Earth Planet Sci Lett 307:341–348

    Article  Google Scholar 

  • Bouhifd MA, Jephcoat AP, Heber VS, Kelley SP (2013) Helium in Earth’s early core. Nat Geosci 6:982–986

    Article  Google Scholar 

  • Boujibar A, Andrault D, Bouhifd MA, Bolfan-Casanova N, Devidal J-L, Trcera N (2014) Metal–silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. Earth Planet Sci Lett 391:42–54

    Article  Google Scholar 

  • Bourdon B, Roskosz M, Hin RC (2018) Isotope tracers of core formation. Earth Sci Rev 181:61–81

    Article  Google Scholar 

  • Bouvier LC, Costa MM, Connelly JN, Jensen NK, Wielandt D, Storey M et al (2018) Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558:586–589

    Article  Google Scholar 

  • Brasser R, Dauphas N, Mojzsis SJ (2018) Jupiter’s influence on the building blocks of Mars and Earth. Geophys Res Lett 45:5908–5917

    Article  Google Scholar 

  • Brennan MC, Fischer RA, Irving JCE (2020) Core formation and geophysical properties of Mars. Earth Planet Sci Lett 530:115923

    Article  Google Scholar 

  • Campbell AJ, Danielson L, Righter K, Seagle CT, Wang Y, Prakapenka VB (2009) High pressure effects on the iron–iron oxide and nickel–nickel oxide oxygen fugacity buffers. Earth Planet Sci Lett 286:556–564

    Article  Google Scholar 

  • Canup RM (2008) Lunar-forming collisions with pre-impact rotation. Icarus 196:518–538

    Article  Google Scholar 

  • Carlson RW, Garnero E, Harrison TM, Li J, Manga M, McDonough WF et al (2014) How did early Earth become our modern world? Annu Rev Earth Planet Sci 42:151–178

    Article  Google Scholar 

  • Carlson RW, Brasser R, Yin Q-Z, Fischer-Gödde M, Qin L (2018) Feedstocks of the terrestrial planets. Space Sci Rev 214:121–153

    Article  Google Scholar 

  • Cartier C, Wood BJ (2019) The role of reducing conditions in building Mercury. Elements 15:39–45

    Article  Google Scholar 

  • Chabot NL, Draper DS, Agee CB (2005) Conditions of core formation in the earth: constraints from nickel and cobalt partitioning. Geochim Cosmochim Acta 69:2141–2151

    Article  Google Scholar 

  • Chen B, Li Z, Zhang D, Liu J, Hu YM, Zhao J et al (2014a) Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3. Proc Natl Acad Sci 111:17755–17758

    Article  Google Scholar 

  • Chen J, Yu T, Huang S, Girard J, Liu X (2014b) Compressibility of liquid FeS measured using X-ray radiograph imaging. Phys Earth Planet Inter 228:294–299

    Article  Google Scholar 

  • Chen B, Lai X, Li J, Liu J, Zhao J, Bi W et al (2018) Experimental constraints on the sound velocities of cementite Fe3C to core pressures. Earth Planet Sci Lett 494:164–171

    Article  Google Scholar 

  • Chi H, Dasgupta R, Duncan MS, Shimizu N (2014) Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean— implications for the abundance and origin of volatiles in Earth, Mars, and the Moon. Geochim Cosmochim Acta 139:447–471

    Article  Google Scholar 

  • Clesi V, Bouhifd MA, Bolfan-Casanova N, Manthilake G, Schiavi F, Raepsaet C et al (2018) Low hydrogen contents in the cores of terrestrial planets. Sci Ances 4:e1701876

    Google Scholar 

  • Connelly JN, Bizzarro M, Krot AN, Nordlund Å, Wielandt D, Ivanova MA (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338:651–655

    Article  Google Scholar 

  • Connelly JN, Schiller M, Bizzarro M (2019) Pb isotope evidence for rapid accretion and differentiation of planetary embryos. Earth Planet Sci Lett 525:115722

    Article  Google Scholar 

  • Corgne A, Keshav S, Wood BJ, McDonough WF, Fei Y (2008) Metal–silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion. Geochim Cosmochim Acta 72:574–589

    Article  Google Scholar 

  • Corgne A, Siebert J, Badro J (2009) Oxygen as a light element: a solution to single-stage core formation. Earth Planet Sci Lett 288:108–114

    Article  Google Scholar 

  • Cottaar S, Koelemeijer P (2021) The interior of Mars revealed. Science 373:388–389

    Article  Google Scholar 

  • Craddock PR, Warren JM, Dauphas N (2013) Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth Planet Sci Lett 365:63–76

    Article  Google Scholar 

  • Cuzzi JN, Dobrovolskis AR, Champney JM (1993) Particle-gas dynamics in the midplane of a protoplanetary nebula. Icarus 106:102–134

    Article  Google Scholar 

  • Cuzzi JN, Hogan RC, Shariff K (2008) Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys J 687:1432

    Article  Google Scholar 

  • Dalou C, Hirschmann MM, von der Handt A, Mosenfelder J, Armstrong LS (2017) Nitrogen and carbon fractionation during core-mantle differentiation at shallow depth. Earth Planet Sci Lett 458:141–151

    Article  Google Scholar 

  • Dalou C, Furi E, Deligny C, Piani L, Caumon M-C, Laumonier M et al (2019) Redox control on nitrogen isotope fractionation during planetary core formation. Proc Natl Acad Sci 116:14485–14494

    Article  Google Scholar 

  • Dasgupta R, Chi H, Shimizu N, Buono AS, Walker D (2013) Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: implications for the origin and distribution of terrestrial carbon. Geochim Cosmochim Acta 102:191–212

    Article  Google Scholar 

  • Dauphas N (2017) The isotopic nature of the Earth’s accreting material through time. Nature 541:521–524

    Article  Google Scholar 

  • Dauphas N, Pourmand A (2011) Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–492

    Article  Google Scholar 

  • Dauphas N, Roskosz M, Alp EE, Golden DC, Sio CK, Tissot FLH et al (2012) A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: application to goethite and jarosite. Geochim Cosmochim Acta 94:254–275

    Article  Google Scholar 

  • Decremps F, Antonangeli D, Gauthier M, Ayrinhac S, Morand M, Marchand GL et al (2014) Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell. Geophys Res Lett 41:1459–1464

    Article  Google Scholar 

  • DeMeo FE, Carry B (2014) Solar System evolution from compositional mapping of the asteroid belt. Nature 505:629–634

    Article  Google Scholar 

  • Deng J, Du Z, Karki BB, Ghosh DB, Lee KKM (2020) A magma ocean origin to divergent redox evolutions of rocky planetary bodies and early atmospheres. Nat Commun 11:2007

    Article  Google Scholar 

  • Dominik C, Blum J, Cuzzi JN, Wurm G (2007) Growth of dust as the initial step toward Planet Formation. University of Arizona Press

  • Dreibus G, Palme H (1996) Cosmochemical constraints on the sulfur content in the Earth’s core. Geochim Cosmochim Acta 60:1125–1130

    Article  Google Scholar 

  • Dreibus G, Wänke H (1987) Volatiles on Earth and Mars: a comparison. Icarus 71:225–240

    Article  Google Scholar 

  • Dubrulle B, Morfill G, Sterzik M (1995) The dust subdisk in the protoplanetary nebula. Icarus 114:237–246

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Elardo SM, Shahar A (2017) Non-chondritic iron isotope ratios in planetary mantles as a result of core formation. Nat Geosci 10:317–321

    Article  Google Scholar 

  • Elkins-Tanton LT (2012) Magma oceans in the inner Solar System. Annu Rev Earth Planet Sci 40:113–139

    Article  Google Scholar 

  • Fei Y, Brosh E (2014) Experimental study and thermodynamic calculations of phase relations in the Fe–C system at high pressure. Earth Planet Sci Lett 408:155–162

    Article  Google Scholar 

  • Fichtner CE, Schmidt MW, Liebske C, Bouvier A-S, Baumgartner LP (2021) Carbon partitioning between metal and silicate melts during Earth accretion. Earth Planet Sci Lett 554:116659

    Article  Google Scholar 

  • Fiquet G, Auzende A, Siebert J, Corgne A, Bureau H, Ozawa H, Garbarino G (2010) Melting of peridotite to 140 gigapascals. Science 329:1516–1518

    Article  Google Scholar 

  • Fischer RA, Nakajima Y, Campbell AJ, Frost DJ, Harries D, Langenhorst F et al (2015) High pressure metal–silicate partitioning of Ni Co, V, Cr, Si, and O. Geochim Cosmochim Acta 167:177–194

    Article  Google Scholar 

  • Fischer RA, Cottrell E, Hauri E, Lee KKM, Le Voyer M (2020) The carbon content of Earth and its core. Proc Natl Acad Sci 117:8743–8749

    Article  Google Scholar 

  • Fitoussi C, Bourdon B, Kleine T, Oberli F, Reynolds BC (2009) Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet Sci Lett 287:77–85

    Article  Google Scholar 

  • Frost DJ, Liebske C, Langenhorst F, McCammon CA, Tronnes RG, Rubie DC (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428:409–412

    Article  Google Scholar 

  • Gao L, Chen B, Wang J, Alp EE, Zhao J, Lerche M et al (2008) Pressure-induced magnetic transition and sound velocities of Fe3C: implications for carbon in the Earth’s inner core. Geophys Res Lett 35:L17306

    Article  Google Scholar 

  • Garcia RF, Khan A, Drilleau M, Margerin L, Kawamura T, Sun D et al (2019) Lunar seismology: an update on interior structure models. Space Sci Rev 215:50

    Article  Google Scholar 

  • Garnero EJ, McNamara AK, Shim S-H (2016) Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat Geosci 9:481–489

    Article  Google Scholar 

  • Geiss, J., Gloeckler, G. (1998) Abundances of deuterium and helium-3 in the protosolar cloud. In: Primordial nuclei and their galactic evolution, pp 239–250

  • Georg RB, Halliday AN, Schauble EA, Reynolds BC (2007) Silicon in the Earth’s core. Nature 447:1102–1106

    Article  Google Scholar 

  • Gessmann CK, Rubie DC (2000) The origin of the depletions of V, Cr and Mn in the mantles of the Earth and Moon. Earth Planet Sci Lett 184:95–107

    Article  Google Scholar 

  • Gessmann C, Wood B, Rubie D, Kilburn M (2001) Solubility of silicon in liquid metal at high pressure: implications for the composition of the Earth’s core. Earth Planet Sci Lett 184:367–376

    Article  Google Scholar 

  • Giardini D, Lognonné P, Banerdt WB, Pike WT, Christensen U, Ceylan S et al (2020) The seismicity of Mars. Nat Geosci 13:205–212

    Article  Google Scholar 

  • Grady MM, Wright IP (2003) Elemental and isotopic abundances of carbon and nitrogen in meteorites. Space Sci Rev 106:231–248

    Article  Google Scholar 

  • Grady MM, Wright I, Pillinger C (1997) Carbon in howardite, eucrite and diogenite basaltic achondrites. Meteorit Planet Sci 32:863–868

    Article  Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. Rev Mineral Geochem 47:247–317

    Article  Google Scholar 

  • Gray C, Compston W (1974) Excess 26Mg in the Allende meteorite. Nature 251:495–497

    Article  Google Scholar 

  • Greenberg R, Wacker JF, Hartmann WK, Chapman CR (1978) Planetesimals to planets: numerical simulation of collisional evolution. Icarus 35:1–26

    Article  Google Scholar 

  • Halliday AN (2004) Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427:505–509

    Article  Google Scholar 

  • Halliday AN (2008) A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos Trans R Soc A Math Phys Eng Sci 366:4163–4181

    Article  Google Scholar 

  • Halliday A, Wänke H, Birck J-L, Clayton R (2001) The accretion, composition and early differentiation of Mars. Space Sci Rev 96:197–230

    Article  Google Scholar 

  • Halliday A, Stirling C, Freedman P, Oberli F, Reynolds B, Georg B (2009) High precision isotope ratio measurements using Multiple Collector Inductively Coupled Plasma Mass Spectrometry. In: Encyclopedia of mass spectrometry

  • Hallis LJ (2017) D/H ratios of the inner Solar System. Philos Trans R Soc A Math Phys Eng Sci 375:20150390

    Article  Google Scholar 

  • Hansen BM (2009) Formation of the terrestrial planets from a narrow annulus. Astrophys J 703:1131

    Article  Google Scholar 

  • Harper CL Jr, Jacobsen SB (1996) Evidence for 182Hf in the early Solar System and constraints on the timescale of terrestrial accretion and core formation. Geochim Cosmochim Acta 60:1131–1153

    Article  Google Scholar 

  • Hasegawa M, Hirose K, Oka K, Ohishi Y (2021) Liquidus phase relations and solid–liquid partitioning in the Fe–Si–C system under core pressures. Geophys Res Lett 48:092681

    Google Scholar 

  • Hauck SA, Margot J-L, Solomon SC, Phillips RJ, Johnson CL, Lemoine FG et al (2013) The curious case of Mercury’s internal structure. J Geophys Res Planets 118:1204–1220

    Article  Google Scholar 

  • Hin RC, Schmidt MW, Bourdon B (2012) Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250–1300 °C and its cosmochemical consequences. Geochim Cosmochim Acta 93:164–181

    Article  Google Scholar 

  • Hin RC, Fitoussi C, Schmidt MW, Bourdon B (2014) Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate. Earth Planet Sci Lett 387:55–66

    Article  Google Scholar 

  • Hirose K, Morard G, Sinmyo R, Umemoto K, Hernlund J, Helffrich G, Labrosse S (2017) Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature 543:99–102

    Article  Google Scholar 

  • Hirose K, Tagawa S, Kuwayama Y, Sinmyo R, Morard G, Ohishi Y, Genda H (2019) Hydrogen limits carbon in liquid iron. Geophys Res Lett 46:5190–5197

    Article  Google Scholar 

  • Holzheid A, Palme H (2007) The formation of eucrites: constraints from metal-silicate partition coefficients. Meteorit Planet Sci 42:1817–1829

    Article  Google Scholar 

  • Honda M, McDougall I, Patterson DB, Doulgeris A, Clague DA (1991) Possible solar noble-gas component in Hawaiian basalts. Nature 349:149–151

    Article  Google Scholar 

  • Horita J, Polyakov VB (2015) Carbon-bearing iron phases and the carbon isotope composition of the deep Earth. Proc Natl Acad Sci 112:31–36

    Article  Google Scholar 

  • Huang H, Fei Y, Cai L, Jing F, Hu X, Xie H et al (2011) Evidence for an oxygen-depleted liquid outer core of the Earth. Nature 479:513–516

    Article  Google Scholar 

  • Huang H, Leng C, Wang Q, Young G, Liu X, Wu Y et al (2019) Equation of state for shocked Fe–8.6 wt% Si up to 240 GPa and 4,670 K. J Geophys Res Solid Earth 124:8300–8312

    Article  Google Scholar 

  • Hublet G, Debaille V, Wimpenny J, Yin Q-Z (2017) Differentiation and magmatic activity in Vesta evidenced by 26Al-26Mg dating in eucrites and diogenites. Geochim Cosmochim Acta 218:73–97

    Article  Google Scholar 

  • Hughes AL, Armitage PJ (2012) Global variation of the dust-to-gas ratio in evolving protoplanetary discs. Mon Not R Astron Soc 423:389–405

    Article  Google Scholar 

  • Ichikawa H, Tsuchiya T (2020) Ab Initio thermoelasticity of liquid iron–nickel–light element alloys. Minerals 10:59–69

    Article  Google Scholar 

  • Ichikawa H, Tsuchiya T, Tange Y (2014) The P-V-T equation of state and thermodynamic properties of liquid iron. J Geophys Res Solid Earth 119:240–252

    Article  Google Scholar 

  • Ida S, Lin D (2008) Toward a deterministic model of planetary formation. V: Accumulation near the ice line and super-Earths. Astrophys J 685:584

    Article  Google Scholar 

  • Ida S, Makino J (1993) Scattering of planetesimals by a protoplanet: slowing down of runaway growth. Icarus 106:210–227

    Article  Google Scholar 

  • Ida S, Guillot T, Morbidelli A (2016) The radial dependence of pebble accretion rates: a source of diversity in planetary systems-I: Analytical formulation. Astron Astrophys 591:72

    Article  Google Scholar 

  • Ikuta D, Ohtani E, Sano-Furukawa A, Shibazaki Y, Terasaki H, Yuan L, Hattori T (2019) Interstitial hydrogen atoms in face-centered cubic iron in the Earth’s core. Sci Rep 9:7108

    Article  Google Scholar 

  • Iwasaki K, Emori H, Nakazawa K, Tanaka H (2002) Orbital stability of a protoplanet system under a drag force proportional to the random velocity. Publ Astron Soc Jpn 54:471–479

    Article  Google Scholar 

  • Jacobsen SB (2005) The Hf-W isotopic system and the origin of the Earth and Moon. Annu Rev Earth Planet Sci 33:531–570

    Article  Google Scholar 

  • Jacobsen SB, Ranen MC, Petaev MI, Remo JL, O’Connell RJ, Sasselov DD (2008) Isotopes as clues to the origin and earliest differentiation history of the Earth. Philos Trans R Soc A Math Phys Eng Sci 366:4129–4162

    Article  Google Scholar 

  • Jacobson SA, Morbidelli A, Raymond SN, O’Brien DP, Walsh KJ, Rubie DC (2014) Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508:84–87

    Article  Google Scholar 

  • Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M et al (2010) The chemical composition of the Earth: enstatite chondrite models. Earth Planet Sci Lett 293:259–268

    Article  Google Scholar 

  • Johansen A, Lacerda P (2010) Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment. Mon Not R Astron Soc 404:475–485

    Google Scholar 

  • Johansen A, Youdin A, Klahr H (2009) Zonal flows and long-lived axisymmetric pressure bumps in magnetorotational turbulence. Astrophys J 697:1269

    Article  Google Scholar 

  • Kadik A, Kurovskaya N, Ignat’ev YA, Kononkova N, Koltashev V, Plotnichenko V (2011) Influence of oxygen fugacity on the solubility of nitrogen, carbon, and hydrogen in FeO–Na2O–SiO2–Al2O3 melts in equilibrium with metallic iron at 1.5 GPa and 1400 °C. Geochem Int 49:429–438

    Article  Google Scholar 

  • Kagan Y, Lyubutin IS (1988) Steelmaking data sourcebook. Gordon and Breach Science Publications, New York

    Google Scholar 

  • Kamada S, Ohtani E, Terasaki H, Sakai T, Miyahara M, Ohishi Y, Hirao N (2012) Melting relationships in the Fe–Fe3S system up to the outer core conditions. Earth Planet Sci Lett 359:26–33

    Article  Google Scholar 

  • Kantor AP, Kantor IY, Kurnosov AV, Kuznetsov AY, Dubrovinskaia NA, Krisch M et al (2007) Sound wave velocities of fcc Fe–Ni alloy at high pressure and temperature by mean of inelastic X-ray scattering. Phys Earth Planet Inter 164:83–89

    Article  Google Scholar 

  • Kawazoe T, Ohtani E (2006) Reaction between liquid iron and (Mg, Fe)SiO3-perovskite and solubilities of Si and O in molten iron at 27 GPa. Phys Chem Miner 33:227–234

    Article  Google Scholar 

  • Kennett BL, Engdahl E, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122:108–124

    Article  Google Scholar 

  • Khan A, Connolly J (2008) Constraining the composition and thermal state of Mars from inversion of geophysical data. J Geophys Res Planets 113:E07003

    Google Scholar 

  • Khan A, Liebske C, Rozel A, Rivoldini A, Nimmo F, Connolly JAD et al (2018) A geophysical perspective on the bulk composition of Mars. J Geophys Res Planets 123:575–611

    Article  Google Scholar 

  • Kiefer WS, Mittlefehldt DW (2017) Differentiation of asteroid 4 Vesta: core formation by iron rain in a silicate magma ocean. In: Lunar and Planetary Science Conference, p 20170001346. The Woodlands

  • Kim T, Ko B, Greenberg E, Prakapenka V, Shim SH, Lee Y (2020) Low melting temperature of anhydrous mantle materials at the core-mantle boundary. Geophys Res Lett 47:E89345

    Google Scholar 

  • Kleine T, Walker RJ (2017) Tungsten isotopes in planets. Annu Rev Earth Planet Sci 45:389–417

    Article  Google Scholar 

  • Kleine T, Touboul M, Bourdon B, Nimmo F, Mezger K, Palme H et al (2009) Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188

    Article  Google Scholar 

  • Knibbe JS, Rivoldini A, Luginbuhl SM, Namur O, Charlier B, Mezouar M et al (2021) Mercury’s interior structure constrained by density and P-wave velocity measurements of liquid Fe–Si–C alloys. J Geophys Res Planets 126:E006651

    Article  Google Scholar 

  • Kokubo E, Ida S (1995) Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 114:247–257

    Article  Google Scholar 

  • Kokubo E, Ida S (1996) On runaway growth of planetesimals. Icarus 123:180–191

    Article  Google Scholar 

  • Komabayashi T (2014) Thermodynamics of melting relations in the system Fe–FeO at high pressure: implications for oxygen in the Earth’s core. J Geophys Res Solid Earth 119:4164–4177

    Article  Google Scholar 

  • Komabayashi T (2021) Phase relations of Earth’s core-forming materials. Curr Comput-Aided Drug Des 11:581–632

    Google Scholar 

  • Kretke KA, Lin D (2007) Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. Astrophys J Lett 664:L55

    Article  Google Scholar 

  • Krijt S, Ormel CW, Dominik C, Tielens AG (2016) A panoptic model for planetesimal formation and pebble delivery. Astron Astrophys 586:A20

    Article  Google Scholar 

  • Kuramoto K, Matsui T (1996) Partitioning of H and C between the mantle and core during the core formation in the Earth: its implications for the atmospheric evolution and redox state of early mantle. J Geophys Res Planets 101:14909–14932

    Article  Google Scholar 

  • Kuwahara H, Itoh S, Nakada R, Irifune T (2019) The effects of carbon concentration and silicate composition on the metal-silicate partitioning of carbon in a shallow magma ocean. Geophys Res Lett 46:9422–9429

    Article  Google Scholar 

  • Labidi J, Cartigny P, Moreira M (2013) Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501:208–211

    Article  Google Scholar 

  • Labidi J, Shahar A, Le Losq C, Hillgren VJ, Mysen BO, Farquhar J (2016) Experimentally determined sulfur isotope fractionation between metal and silicate and implications for planetary differentiation. Geochim Cosmochim Acta 175:181–194

    Article  Google Scholar 

  • Lai X, Zhu F, Liu Y, Bi W, Zhao J, Alp EE et al (2020) Elastic and magnetic properties of Fe3P up to core pressures: phosphorus in the Earth’s core. Earth Planet Sci Lett 531:115974

    Article  Google Scholar 

  • Lambrechts M, Johansen A (2012) Rapid growth of gas-giant cores by pebble accretion. Astron Astrophys 544:A32

    Article  Google Scholar 

  • Lammer H, Brasser R, Johansen A, Scherf M, Leitzinger M (2020a) Formation of Venus, Earth and Mars: constrained by Isotopes. Space Sci Rev 217:7

    Article  Google Scholar 

  • Lammer H, Scherf M, Kurokawa H, Ueno Y, Burger C, Maindl T et al (2020b) Loss and fractionation of noble gas isotopes and moderately volatile elements from planetary embryos and early Venus Earth and Mars. Space Sci Rev 216:74

    Article  Google Scholar 

  • Larsen K, Wielandt D, Schiller M, Krot A, Bizzarro M (2020) Episodic formation of refractory inclusions in the Solar System and their presolar heritage. Earth Planet Sci Lett 535:116088

    Article  Google Scholar 

  • Levison HF, Thommes E, Duncan MJ (2010) Modeling the formation of giant planet cores. I. Evaluating key processes. Astron J 139:1297–1314

    Article  Google Scholar 

  • Li J, Agee CB (1996) Geochemistry of mantle–core differentiation at high pressure. Nature 381:686–689

    Article  Google Scholar 

  • Li J, Agee C (2001) The effect of pressure, temperature, oxygen fugacity and composition on partitioning of nickel and cobalt between liquid Fe–Ni–S alloy and liquid silicate: implications for the Earth’s core formation. Geochim Cosmochim Acta 65:1821–1832

    Article  Google Scholar 

  • Li J, Fei Y (2014) 3.15-Experimental constraints on core composition. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry, 2nd edn. Elsevier, pp 527–557

  • Li Y, Dasgupta R, Tsuno K (2015) The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 °C: implications for core–mantle differentiation and degassing of magma oceans and reduced planetary mantles. Earth Planet Sci Lett 415:54–66

    Article  Google Scholar 

  • Li Y, Dasgupta R, Tsuno K, Monteleone B, Shimizu N (2016a) Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos. Nat Geosci 9:781–785

    Article  Google Scholar 

  • Li Y, Marty B, Shcheka S, Zimmermann L, Keppler H (2016b) Nitrogen isotope fractionation during terrestrial core-mantle separation. Geochem Perspect Lett 2:138–147

    Article  Google Scholar 

  • Li Y, Vočadlo L, Brodholt J, Wood I (2016c) Thermoelasticity of Fe7C3 under inner core conditions. J Geophys Res Solid Earth 121:5828–5837

    Article  Google Scholar 

  • Li Y, Vočadlo L, Brodholt JP (2018) The elastic properties of hcp-Fe alloys under the conditions of the Earth’s inner core. Earth Planet Sci Lett 493:118–127

    Article  Google Scholar 

  • Li Y, Vočadlo L, Sun T, Brodholt JP (2020) The Earth’s core as a reservoir of water. Nat Geosci 13:453–458

    Article  Google Scholar 

  • Liebske C, Schmickler B, Terasaki H, Poe BT, Suzuki A, Funakoshi K-I et al (2005) Viscosity of peridotite liquid up to 13 GPa: implications for magma ocean viscosities. Earth Planet Sci Lett 240:589–604

    Article  Google Scholar 

  • Lin DN, Papaloizou J (1986) On the tidal interaction between protoplanets and the protoplanetary disk. III—orbital migration of protoplanets. Astrophys J 309:846–857

    Article  Google Scholar 

  • Lin J-F, Sturhahn W, Zhao J, Shen G, Mao H-K, Hemley RJ (2005) Sound velocities of hot dense iron: Birch’s law revisited. Science 308:1892–1894

    Article  Google Scholar 

  • Lissauer JJ (1987) Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69:249–265

    Article  Google Scholar 

  • Litasov KD, Shatskiy AF (2016) Composition of the Earth’s core: a review. Russ Geol Geophys 57:22–46

    Article  Google Scholar 

  • Litasov KD, Shatskiy A, Ponomarev DS, Gavryushkin PN (2017) Equations of state of iron nitrides ε-Fe3Nx and γ-Fe4Ny to 30 GPa and 1200 K and implication for nitrogen in the Earth’s core. J Geophys Res Solid Earth 122:3574–3584

    Article  Google Scholar 

  • Liu J, Lin J-F, Alatas A, Bi W (2014) Sound velocities of bcc-Fe and Fe0.85Si0.15 alloy at high pressure and temperature. Phys Earth Planet Inter 233:24–32

    Article  Google Scholar 

  • Liu J, Lin JF, Alatas A, Hu MY, Zhao J, Dubrovinsky L (2016a) Seismic parameters of hcp-Fe alloyed with Ni and Si in the Earth’s inner core. J Geophys Res Solid Earth 121:610–623

    Article  Google Scholar 

  • Liu J, Lin JF, Prakapenka VB, Prescher C, Yoshino T (2016b) Phase relations of Fe3C and Fe7C3 up to 185 GPa and 5200 K: implication for the stability of iron carbide in the Earth’s core. Geophys Res Lett 43(12):415–444

    Google Scholar 

  • Liu J, Dauphas N, Roskosz M, Hu MY, Yang H, Bi W et al (2017) Iron isotopic fractionation between silicate mantle and metallic core at high pressure. Nat Commun 8:14377

    Article  Google Scholar 

  • Lodders K, Fegley B (1997) An oxygen isotope model for the composition of Mars. Icarus 126:373–394

    Article  Google Scholar 

  • Lorand J-P, Luguet A, Alard O (2013) Platinum-group element systematics and petrogenetic processing of the continental upper mantle: a review. Lithos 164:2–21

    Article  Google Scholar 

  • Lord OT, Walter MJ, Dasgupta R, Walker D, Clark SM (2009) Melting in the Fe–C system to 70 GPa. Earth Planet Sci Lett 284:157–167

    Article  Google Scholar 

  • Lord OT, Wann ET, Hunt SA, Walker AM, Santangeli J, Walter MJ et al (2014) The NiSi melting curve to 70 GPa. Phys Earth Planet Inter 233:13–23

    Article  Google Scholar 

  • Lyra W, Johansen A, Klahr H, Piskunov N (2008) Embryos grown in the dead zone-Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids. Astron Astrophys 491:L41–L44

    Article  Google Scholar 

  • Malavergne V, Toplis MJ, Berthet S, Jones J (2010) Highly reducing conditions during core formation on Mercury: implications for internal structure and the origin of a magnetic field. Icarus 206:199–209

    Article  Google Scholar 

  • Malavergne V, Bureau H, Raepsaet C, Gaillard F, Poncet M, Surblé S et al (2019) Experimental constraints on the fate of H and C during planetary core-mantle differentiation. Implications for the Earth. Icarus 321:473–485

    Article  Google Scholar 

  • Mao Z, Lin JF, Liu J, Alatas A, Gao L, Zhao J, Mao HK (2012) Sound velocities of Fe and Fe–Si alloy in the Earth’s core. Proc Natl Acad Sci 109:10239–10244

    Article  Google Scholar 

  • Margot JL, Peale SJ, Solomon SC, Hauck SA, Ghigo FD, Jurgens RF et al (2012) Mercury’s moment of inertia from spin and gravity data. J Geophys Res Planets 117:E00L09

    Article  Google Scholar 

  • Margot J-L, Hauck SA II, Mazarico E, Padovan S, Peale SJ (2018) Mercury’s internal structure. Cambridge University Press, Cambridge

    Google Scholar 

  • Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313–314:56–66

    Article  Google Scholar 

  • Mashino I, Miozzi F, Hirose K, Morard G, Sinmyo R (2019) Melting experiments on the Fe–C binary system up to 255 GPa: constraints on the carbon content in the Earth’s core. Earth Planet Sci Lett 515:135–144

    Article  Google Scholar 

  • Masset F, Snellgrove M (2001) Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon Not R Astron Soc 320:L55–L59

    Article  Google Scholar 

  • Masters G, Gubbins D (2003) On the resolution of density within the Earth. Phys Earth Planet Inter 140:159–167

    Article  Google Scholar 

  • Matsuda J, Sudo M, Ozima M, Ito K, Ohtaka O, Ito E (1993) Noble gas partitioning between metal and silicate under high pressures. Science 259:788–790

    Article  Google Scholar 

  • Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180

    Article  Google Scholar 

  • McCord TB, Adams JB, Johnson TV (1970) Asteroid Vesta: spectral reflectivity and compositional implications. Science 168:1445–1447

    Article  Google Scholar 

  • McCubbin FM, Barnes JJ (2019) Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids. Earth Planet Sci Lett 526:115771

    Article  Google Scholar 

  • McCubbin FM, Riner MA, Vander Kaaden KE, Burkemper LK (2012) Is Mercury a volatile-rich planet? Geophys Res Lett 39:L09202

    Article  Google Scholar 

  • McDonough WF (2001) The composition of the Earth. Academic Press

  • McDonough W (2014) 3.16-Compositional model for the Earth’s core. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry, 2edn. Elsevier, pp 559–577

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mezger K, Schönbächler M, Bouvier A (2020) Accretion of the Earth—missing components? Space Sci Rev 216:27

    Article  Google Scholar 

  • Miozzi F, Morard G, Antonangeli D, Baron MA, Boccato S, Pakhomova A et al (2020) Eutectic melting of Fe-3 at% Si-4 at% C up to 200 GPa and implications for the Earth’s core. Earth Planet Sci Lett 544:116382

    Article  Google Scholar 

  • Morard G, Katsura T (2010) Pressure–temperature cartography of Fe–S–Si immiscible system. Geochim Cosmochim Acta 74:3659–3667

    Article  Google Scholar 

  • Morard G, Andrault D, Guignot N, Sanloup C, Mezouar M, Petitgirard S, Fiquet G (2008) In situ determination of Fe–Fe3S phase diagram and liquid structural properties up to 65 GPa. Earth Planet Sci Lett 272:620–626

    Article  Google Scholar 

  • Morard G, Andrault D, Guignot N, Siebert J, Garbarino G, Antonangeli D (2011) Melting of Fe–Ni–Si and Fe–Ni–S alloys at megabar pressures: implications for the core–mantle boundary temperature. Phys Chem Miner 38:767–776

    Article  Google Scholar 

  • Morard G, Siebert J, Andrault D, Guignot N, Garbarino G, Guyot F, Antonangeli D (2013) The Earth’s core composition from high pressure density measurements of liquid iron alloys. Earth Planet Sci Lett 373:169–178

    Article  Google Scholar 

  • Morard G, Andrault D, Antonangeli D, Nakajima Y, Auzende AL, Boulard E et al (2017) Fe–FeO and Fe–Fe3C melting relations at Earth’s core–mantle boundary conditions: implications for a volatile-rich or oxygen-rich core. Earth Planet Sci Lett 473:94–103

    Article  Google Scholar 

  • Morbidelli A, Raymond SN (2016) Challenges in planet formation. J Geophys Res Planets 121:1962–1980

    Article  Google Scholar 

  • Morgan JW, Anders E (1979) Chemical composition of Mars. Geochim Cosmochim Acta 43:1601–1610

    Article  Google Scholar 

  • Mori Y, Ozawa H, Hirose K, Sinmyo R, Tateno S, Morard G, Ohishi Y (2017) Melting experiments on Fe–Fe3S system to 254 GPa. Earth Planet Sci Lett 464:135–141

    Article  Google Scholar 

  • Mysen BO (2003) Physics and chemistry of silicate glasses and melts. Eur J Mineral 15:781–802

    Article  Google Scholar 

  • Mysen BO, Virgo D, Seifert FA (1982) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev Geophys 20:353–383

    Article  Google Scholar 

  • Namur O, Charlier B, Holtz F, Cartier C, McCammon C (2016) Sulfur solubility in reduced mafic silicate melts: implications for the speciation and distribution of sulfur on Mercury. Earth Planet Sci Lett 448:102–114

    Article  Google Scholar 

  • Neumann W, Breuer D, Spohn T (2014) Differentiation of Vesta: implications for a shallow magma ocean. Earth Planet Sci Lett 395:267–280

    Article  Google Scholar 

  • Nimmo F, Kleine T (2015) Early differentiation and core formation: processes and timescales. In: The early Earth: accretion and differentiation, pp 83–102

  • Nishida K, Terasaki H, Ohtani E, Suzuki A (2008) The effect of sulfur content on density of the liquid Fe–S at high pressure. Phys Chem Miner 35:417–423

    Article  Google Scholar 

  • Nittler LR, Starr RD, Weider SZ, McCoy TJ, Boynton WV, Ebel DS et al (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333:1847–1850

    Article  Google Scholar 

  • Ohtani E, Mibe K, Sakamaki T, Kamada S, Takahashi S, Fukui H et al (2015) Sound velocity measurement by inelastic X-ray scattering at high pressure and temperature by resistive heating diamond anvil cell. Russ Geol Geophys 56:190–195

    Article  Google Scholar 

  • Oka K, Hirose K, Tagawa S, Kidokoro Y, Nakajima Y, Kuwayama Y et al (2019) Melting in the Fe-FeO system to 204 GPa: Implications for oxygen in Earth’s core. Am Miner 104:1603–1607

    Article  Google Scholar 

  • Okuchi T (1997) Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278:1781–1784

    Article  Google Scholar 

  • Okuzumi S, Tanaka H, Kobayashi H, Wada K (2012) Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophys J 752:106

    Article  Google Scholar 

  • Ormel C, Klahr H (2010) The effect of gas drag on the growth of protoplanets-analytical expressions for the accretion of small bodies in laminar disks. Astron Astrophys 520:A43

    Article  Google Scholar 

  • Ozawa H, Hirose K, Tateno S, Sata N, Ohishi Y (2010) Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa. Phys Earth Planet Inter 179:157–163

    Article  Google Scholar 

  • Ozawa H, Hirose K, Yonemitsu K, Ohishi Y (2016) High-pressure melting experiments on Fe–Si alloys and implications for silicon as a light element in the core. Earth Planet Sci Lett 456:47–54

    Article  Google Scholar 

  • Palme H, O’Neil H (2014) 3.1-Cosmochemical estimates of mantle composition. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry, 2nd edn. Elsevier, pp 1–39

  • Palme H, Rammensee W (1981) Tungsten and some other siderophile elements in meteroitic and terrestrial basalts. Lunar Planet Sci 12:796–798

    Google Scholar 

  • Pigott JS, Ditmer DA, Fischer RA, Reaman DM, Hrubiak R, Meng Y et al (2015) High-pressure, high-temperature equations of state using nanofabricated controlled-geometry Ni/SiO2/Ni double hot-plate samples. Geophys Res Lett 42:10239–10247

    Article  Google Scholar 

  • Poitrasson F, Halliday AN, Lee D-C, Levasseur S, Teutsch N (2004) Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet Sci Lett 223:253–266

    Article  Google Scholar 

  • Polyakov VB (2009) Equilibrium iron isotope fractionation at core-mantle boundary conditions. Science 323:912–914

    Article  Google Scholar 

  • Pradhan GK, Fiquet G, Siebert J, Auzende A-L, Morard G, Antonangeli D, Garbarino G (2015) Melting of MORB at core–mantle boundary. Earth Planet Sci Lett 431:247–255

    Article  Google Scholar 

  • Prescher C, Dubrovinsky L, Bykova E, Kupenko I, Glazyrin K, Kantor A et al (2015) High poisson’s ratio of Earth’s inner core explained by carbon alloying. Nat Geosci 8:220–223

    Article  Google Scholar 

  • Pringle EA, Savage PS, Badro J, Barrat J-A, Moynier F (2013) Redox state during core formation on asteroid 4-Vesta. Earth Planet Sci Lett 373:75–82

    Article  Google Scholar 

  • Ricard Y, Šrámek O, Dubuffet F (2009) A multi-phase model of runaway core–mantle segregation in planetary embryos. Earth Planet Sci Lett 284:144–150

    Article  Google Scholar 

  • Ricolleau A, Fei Y, Corgne A, Siebert J, Badro J (2011) Oxygen and silicon contents of Earth’s core from high pressure metal–silicate partitioning experiments. Earth Planet Sci Lett 310:409–421

    Article  Google Scholar 

  • Righter K, Chabot NL (2011) Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteorit Planet Sci 46:157–176

    Article  Google Scholar 

  • Righter K, Ghiorso MS (2012) Redox systematics of a magma ocean with variable pressure-temperature gradients and composition. Proc Natl Acad Sci 109:11955–11960

    Article  Google Scholar 

  • Righter K, Shearer C (2003) Magmatic fractionation of Hf and W: constraints on the timing of core formation and differentiation in the Moon and Mars. Geochim Cosmochim Acta 67:2497–2507

    Article  Google Scholar 

  • Righter K, Drake M, Yaxley G (1997) Prediction of siderophile element metal-silicate partition coefficients to 20 GPa and 2800 °C: the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions. Phys Earth Planet Inter 100:115–134

    Article  Google Scholar 

  • Righter K, King C, Danielson L, Pando K, Lee C (2011) Experimental determination of the metal/silicate partition coefficient of Germanium: implications for core and mantle differentiation. Earth Planet Sci Lett 304:379–388

    Article  Google Scholar 

  • Righter K, Go B, Pando K, Danielson L, Ross D, Rahman Z, Keller L (2017) Phase equilibria of a low S and C lunar core: implications for an early lunar dynamo and physical state of the current core. Earth Planet Sci Lett 463:323–332

    Article  Google Scholar 

  • Ringwood AE (1979) Homogeneous accretion revisited. In: Ringwood AE (ed) Origin of the Earth and Moon. Springer, New York, pp 122–134

    Chapter  Google Scholar 

  • Rose-Weston L, Brenan JM, Fei Y, Secco RA, Frost DJ (2009) Effect of pressure, temperature, and oxygen fugacity on the metal-silicate partitioning of Te, Se, and S: implications for earth differentiation. Geochim Cosmochim Acta 73:4598–4615

    Article  Google Scholar 

  • Roskosz M, Bouhifd MA, Jephcoat AP, Marty B, Mysen BO (2013) Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochim Cosmochim Acta 121:15–28

    Article  Google Scholar 

  • Rubie DC, Jacobson SA (2016) Mechanisms and geochemical models of core formation. Deep Earth Phys Chem Lower Mantle Core 217:181–190

    Article  Google Scholar 

  • Rubie DC, Melosh HJ, Reid JE, Liebske C, Righter K (2003) Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth Planet Sci Lett 205:239–255

    Article  Google Scholar 

  • Rubie DC, Gessmann CK, Frost DJ (2004) Partitioning of oxygen during core formation on the Earth and Mars. Nature 429:58–61

    Article  Google Scholar 

  • Rubie DC, Frost DJ, Mann U, Asahara Y, Nimmo F, Tsuno K et al (2011) Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet Sci Lett 301:31–42

    Article  Google Scholar 

  • Rubie DC, Jacobson SA, Morbidelli A, O’Brien DP, Young ED, de Vries J et al (2015) Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248:89–108

    Article  Google Scholar 

  • Russell C, Raymond C, Coradini A, McSween H, Zuber MT, Nathues A et al (2012) Dawn at Vesta: testing the protoplanetary paradigm. Science 336:684–686

    Article  Google Scholar 

  • Sanloup C, Jambon A, Gillet P (1999) A simple chondritic model of Mars. Phys Earth Planet Inter 112:43–54

    Article  Google Scholar 

  • Sanloup C, Van Westrenen W, Dasgupta R, Maynard-Casely H, Perrillat J-P (2011) Compressibility change in iron-rich melt and implications for core formation models. Earth Planet Sci Lett 306:118–122

    Article  Google Scholar 

  • Sata N, Hirose K, Shen G, Nakajima Y, Ohishi Y, Hirao N (2010) Compression of FeSi, Fe3C, Fe0.95O, and FeS under the core pressures and implication for light element in the Earth’s core. J Geophys Res Solid Earth 115:9204

    Article  Google Scholar 

  • Satish-Kumar M, So H, Yoshino T, Kato M, Hiroi Y (2011) Experimental determination of carbon isotope fractionation between iron carbide melt and carbon: 12C-enriched carbon in the Earth’s core? Earth Planet Sci Lett 310:340–348

    Article  Google Scholar 

  • Schiller M, Bizzarro M, Fernandes VA (2018) Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555:507–510

    Article  Google Scholar 

  • Scott ER, Greenwood RC, Franchi IA, Sanders IS (2009) Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochim Cosmochim Acta 73:5835–5853

    Article  Google Scholar 

  • Shahar A, Schauble EA, Caracas R, Gleason AE, Reagan MM, Xiao Y et al (2016) Pressure-dependent isotopic composition of iron alloys. Science 352:580–582

    Article  Google Scholar 

  • Shi CY, Zhang L, Yang W, Liu Y, Wang J, Meng Y et al (2013) Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nat Geosci 6:971–975

    Article  Google Scholar 

  • Shibazaki Y, Ohtani E, Terasaki H, Suzuki A, Funakoshi K-I (2009) Hydrogen partitioning between iron and ringwoodite: implications for water transport into the Martian core. Earth Planet Sci Lett 287:463–470

    Article  Google Scholar 

  • Siebert J, Corgne A, Ryerson FJ (2011) Systematics of metal–silicate partitioning for many siderophile elements applied to Earth’s core formation. Geochim Cosmochim Acta 75:1451–1489

    Article  Google Scholar 

  • Siebert J, Badro J, Antonangeli D, Ryerson FJ (2012) Metal–silicate partitioning of Ni and Co in a deep magma ocean. Earth Planet Sci Lett 321–322:189–197

    Article  Google Scholar 

  • Siebert J, Badro J, Antonangeli D, Ryerson FJ (2013) Terrestrial accretion under oxidizing conditions. Science 339:1194–1197

    Article  Google Scholar 

  • Simon JB, Armitage PJ (2014) Efficiency of particle trapping in the outer regions of protoplanetary disks. Astrophys J 784:15

    Article  Google Scholar 

  • Smith DE, Zuber MT, Phillips RJ, Solomon SC, Hauck SA, Lemoine FG et al (2012) Gravity field and internal structure of Mercury from MESSENGER. Science 336:214–217

    Article  Google Scholar 

  • Sossi PA, Nebel O, Anand M, Poitrasson F (2016) On the iron isotope composition of Mars and volatile depletion in the terrestrial planets. Earth Planet Sci Lett 449:360–371

    Article  Google Scholar 

  • Speelmanns IM, Schmidt MW, Liebske C (2019) The almost lithophile character of nitrogen during core formation. Earth Planet Sci Lett 510:186–197

    Article  Google Scholar 

  • Šrámek O, Ricard Y, Dubuffet F (2010) A multiphase model of core formation. Geophys J Int 181:198–220

    Article  Google Scholar 

  • Stähler SC, Khan A, Banerdt WB, Lognonné P, Giardini D, Ceylan S et al (2021) Seismic detection of the martian core. Science 373:443–448

    Article  Google Scholar 

  • Steenstra ES, van Westrenen W (2018) A synthesis of geochemical constraints on the inventory of light elements in the core of Mars. Icarus 315:69–78

    Article  Google Scholar 

  • Steenstra ES, Knibbe JS, Rai N, van Westrenen W (2016) Constraints on core formation in Vesta from metal–silicate partitioning of siderophile elements. Geochim Cosmochim Acta 177:48–61

    Article  Google Scholar 

  • Steenstra E, Seegers A, Eising J, Tomassen B, Webers F, Berndt J et al (2018) Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements. Geochim Cosmochim Acta 231:130–156

    Article  Google Scholar 

  • Steenstra ES, Dankers D, Berndt J, Klemme S, Matveev S, van Westrenen W (2019) Significant depletion of volatile elements in the mantle of asteroid Vesta due to core formation. Icarus 317:669–681

    Article  Google Scholar 

  • Steenstra ES, van Westrenen W (2017) Lunar Magma Ocean, comparison to other planetary Magma Oceans. In: Encyclopedia of Lunar Science, pp 1–6

  • Stevenson DJ, Scott DR (1991) Mechanics of fluid-rock systems. Annu Rev Fluid Mech 23:305–339

    Article  Google Scholar 

  • Stevenson DJ (1990) Fluid dynamics of core formation. In: Origin of the Earth, pp 231–249.

  • Suer T-A, Siebert J, Remusat L, Menguy N, Fiquet G (2017) A sulfur-poor terrestrial core inferred from metal–silicate partitioning experiments. Earth Planet Sci Lett 469:84–97

    Article  Google Scholar 

  • Tagawa S, Sakamoto N, Hirose K, Yokoo S, Hernlund J, Ohishi Y, Yurimoto H (2021) Experimental evidence for hydrogen incorporation into Earth’s core. Nat Commun 12:2588

    Article  Google Scholar 

  • Takafuji N, Hirose K, Ono S, Xu F, Mitome M, Bando Y (2004) Segregation of core melts by permeable flow in the lower mantle. Earth Planet Sci Lett 224:249–257

    Article  Google Scholar 

  • Tang H, Dauphas N (2012) Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth Planet Sci Lett 359:248–263

    Article  Google Scholar 

  • Tateno S, Hirose K, Sinmyo R, Morard G, Hirao N, Ohishi Y (2018) Melting experiments on Fe–Si–S alloys to core pressures: silicon in the core? Am Miner 103:742–748

    Article  Google Scholar 

  • Tateyama R, Ohtani E, Terasaki H, Nishida K, Shibazaki Y, Suzuki A, Kikegawa T (2011) Density measurements of liquid Fe–Si alloys at high pressure using the sink–float method. Phys Chem Miner 38:801–807

    Article  Google Scholar 

  • Taylor GJ (2013) The bulk composition of Mars. Geochemistry 73:401–420

    Article  Google Scholar 

  • Taylor SR, Jakeš P (1974) Lunar science conference. Pergamon Press, Houston, pp 1287–1305

    Google Scholar 

  • Taylor FW, Svedhem H, Head JW (2018) Venus: the atmosphere, climate, surface, interior and near-space environment of an Earth-Like planet. Space Sci Rev 214:35

    Article  Google Scholar 

  • Teng F-Z, Dauphas N, Huang S, Marty B (2013) Iron isotopic systematics of oceanic basalts. Geochim Cosmochim Acta 107:12–26

    Article  Google Scholar 

  • Terasaki H, Fischer RA (2016) Deep Earth: physics and chemistry of the lower Mantle and Core. American Geophysical Union

  • Terasaki H, Frost DJ, Rubie DC, Langenhorst F (2005) The effect of oxygen and sulphur on the dihedral angle between Fe–O–S melt and silicate minerals at high pressure: implications for Martian core formation. Earth Planet Sci Lett 232:379–392

    Article  Google Scholar 

  • Thompson EC, Davis AH, Bi W, Zhao J, Alp EE, Zhang D et al (2018) High-pressure geophysical properties of fcc phase FeHX. Geochem Geophys Geosyst 19:305–314

    Article  Google Scholar 

  • Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res Planets 98:5319–5333

    Article  Google Scholar 

  • Toplis MJ, Mizzon H, Monnereau M, Forni O, McSween HY, Mittlefehldt DW et al (2013) Chondritic models of 4 Vesta: implications for geochemical and geophysical properties. Meteorit Planet Sci 48:2300–2315

    Article  Google Scholar 

  • Touboul M, Sprung P, Aciego SM, Bourdon B, Kleine T (2015) Hf–W chronology of the eucrite parent body. Geochim Cosmochim Acta 156:106–121

    Article  Google Scholar 

  • Trønnes RG, Baron MA, Eigenmann KR, Guren MG, Heyn BH, Løken A, Mohn CE (2019) Core formation, mantle differentiation and core-mantle interaction within Earth and the terrestrial planets. Tectonophysics 760:165–198

    Article  Google Scholar 

  • Tsuno K, Frost DJ, Rubie DC (2011) The effects of nickel and sulphur on the core–mantle partitioning of oxygen in Earth and Mars. Phys Earth Planet Inter 185:1–12

    Article  Google Scholar 

  • Tsuno K, Frost DJ, Rubie DC (2013) Simultaneous partitioning of silicon and oxygen into the Earth’s core during early Earth differentiation. Geophys Res Lett 40:66–71

    Article  Google Scholar 

  • Tsuno K, Grewal DS, Dasgupta R (2018) Core-mantle fractionation of carbon in Earth and Mars: the effects of sulfur. Geochim Cosmochim Acta 238:477–495

    Article  Google Scholar 

  • Vander Kaaden KE, McCubbin FM, Turner AA, Ross DK (2019) Constraints on the abundances of carbon and silicon in Mercury’s core from experiments in the Fe–Si–C system. J Geophys Res Planets 125:006239

    Google Scholar 

  • Vočadlo L, Dobson DP, Wood IG (2009) Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure. Earth Planet Sci Lett 288:534–538

    Article  Google Scholar 

  • Wada K, Tanaka H, Suyama T, Kimura H, Yamamoto T (2009) Collisional growth conditions for dust aggregates. Astrophys J 702:1490

    Article  Google Scholar 

  • Wada K, Tanaka H, Okuzumi S, Kobayashi H, Suyama T, Kimura H, Yamamoto T (2013) Growth efficiency of dust aggregates through collisions with high mass ratios. Astron Astrophys 559:A62

    Article  Google Scholar 

  • Wade J, Wood BJ (2005) Core formation and the oxidation state of the Earth. Earth Planet Sci Lett 236:78–95

    Article  Google Scholar 

  • Walsh KJ, Levison HF (2016) Terrestrial planet formation from an annulus. Astron J 152:68

    Article  Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    Article  Google Scholar 

  • Walte N, Heidelbach F, Miyajima N, Frost D (2007) Texture development and TEM analysis of deformed CaIrO3: implications for the D″ layer at the core-mantle boundary. Geophys Res Lett 34:L08306

    Article  Google Scholar 

  • Wang H, Weiss BP, Bai X-N, Downey BG, Wang J, Wang J et al (2017) Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355:623–627

    Article  Google Scholar 

  • Wänke H, Dreibus G (1988) Chemical composition and accretion history of terrestrial planets. Philos Trans R Soc A Math Phys Eng Sci 325:545–557

    Google Scholar 

  • Warren PH (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet Sci Lett 311:93–100

    Article  Google Scholar 

  • Waseda Y, Shiraishi Y, Toguri JM (1980) The structure of the molten FeO–Fe2O3–SiO2 system by X-ray diffraction. Trans Jpn Inst Met 21:51–62

    Article  Google Scholar 

  • Weber RC, Lin PY, Garnero EJ, Williams Q, Lognonne P (2011) Seismic detection of the lunar core. Science 331:309–312

    Article  Google Scholar 

  • Weidenschilling S (1980) Dust to planetesimals: settling and coagulation in the solar nebula. Icarus 44:172–189

    Article  Google Scholar 

  • Weidenschilling S (1995) Can gravitational instability form planetesimals? Icarus 116:433–435

    Article  Google Scholar 

  • Wetherill GW (1985) Occurrence of giant impacts during the growth of the terrestrial planets. Science 228:877–879

    Article  Google Scholar 

  • Wetherill G, Stewart GR (1989) Accumulation of a swarm of small planetesimals. Icarus 77:330–357

    Article  Google Scholar 

  • Weyer S, Anbar A, Brey G, Munker C, Mezger K, Woodland A (2005) Iron isotope fractionation during planetary differentiation. Earth Planet Sci Lett 240:251–264

    Article  Google Scholar 

  • Whipple FL (1972) From plasma to planet, p 211

  • Williams HM, Markowski A, Quitté G, Halliday AN, Teutsch N, Levasseur S (2006) Fe isotope fractionation in iron meteorites: new insights into metal-sulphide segregation and planetary accretion. Earth Planet Sci Lett 250:486–500

    Article  Google Scholar 

  • Woo JMY, Brasser R, Matsumura S, Mojzsis SJ, Ida S (2018) The curious case of Mars’ formation. Astron Astrophys 617:A17

    Article  Google Scholar 

  • Wood JA, Dickey JS Jr, Marvin UB, Powell B (1970) Lunar anorthosites and a geophysical model of the moon. Geochim Cosmochim Acta Suppl 1:965

    Google Scholar 

  • Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833

    Article  Google Scholar 

  • Wood BJ, Li J, Shahar A (2013) Carbon in the core: its influence on the properties of Core and Mantle. Rev Mineral Geochem 75:231–250

    Article  Google Scholar 

  • Wu J, Desch SJ, Schaefer L, Elkins-Tanton LT, Pahlevan K, Buseck PR (2018) Origin of Earth’s water: chondritic inheritance plus nebular ingassing and storage of hydrogen in the core. J Geophys Res Planets 123:2691–2712

    Article  Google Scholar 

  • Yin Q, Jacobsen S, Yamashita K, Blichert-Toft J, Télouk P, Albarede F (2002) A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418:949–952

    Article  Google Scholar 

  • Yokoo S, Hirose K, Sinmyo R, Tagawa S (2019) Melting experiments on liquidus phase relations in the Fe–S–O ternary system under core pressures. Geophys Res Lett 46:5137–5145

    Article  Google Scholar 

  • Yoshioka T, Wiedenbeck M, Shcheka S, Keppler H (2018) Nitrogen solubility in the deep mantle and the origin of Earth’s primordial nitrogen budget. Earth Planet Sci Lett 488:134–143

    Article  Google Scholar 

  • Yoshizaki T, McDonough WF (2020) The composition of Mars. Geochim Cosmochim Acta 273:137–162

    Article  Google Scholar 

  • Youdin AN, Goodman J (2005) Streaming instabilities in protoplanetary disks. Astrophys J 620:459

    Article  Google Scholar 

  • Yu G, Jacobsen SB (2011) Fast accretion of the Earth with a late Moon-forming giant impact. Proc Natl Acad Sci 108:17604–17609

    Article  Google Scholar 

  • Zhang Y, Yin Q (2012) Carbon and other light element contents in the Earth’s core based on first-principles molecular dynamics. Proc Natl Acad Sci 109:19579–19583

    Article  Google Scholar 

  • Zhang Y, Sekine T, He H, Yu Y, Liu F, Zhang M (2014) Shock compression of Fe–Ni–Si system to 280 GPa: implications for the composition of the Earth’s outer core. Geophys Res Lett 41:4554–4559

    Article  Google Scholar 

  • Zhou J, Lin DN, Sun Y (2007) Post-oligarchic evolution of protoplanetary embryos and the stability of planetary systems. Astrophys J 666:423

    Article  Google Scholar 

  • Zhu F, Lai X, Wang J, Amulele G, Kono Y, Shen G et al (2021) Density of Fe–Ni–C liquids at high pressures and implications for liquid cores of Earth and the Moon. J Geophys Res Solid Earth 126:021089

    Article  Google Scholar 

  • Ziegler K, Young ED, Schauble EA, Wasson JT (2010) Metal–silicate silicon isotope fractionation in enstatite meteorites and constraints on Earth’s core formation. Earth Planet Sci Lett 295:487–496

    Article  Google Scholar 

  • Zolotov MY, Sprague AL, Hauck SA, Nittler LR, Solomon SC, Weider SZ (2013) The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J Geophys Res Planets 118:138–146

    Article  Google Scholar 

  • Zsom A, Ormel CW, Güttler C, Blum J, Dullemond C (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?—II. Introducing the bouncing barrier. Astron Astrophys 513:57

    Article  Google Scholar 

  • Zube NG, Nimmo F, Fischer RA, Jacobson SA (2019) Constraints on terrestrial planet formation timescales and equilibration processes in the Grand Tack scenario from Hf-W isotopic evolution. Earth Planet Sci Lett 522:210–218

    Article  Google Scholar 

  • Zuber MT, Smith DE, Phillips RJ, Solomon SC, Neumann GA, Hauck SA et al (2012) Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science 336:217–220

    Article  Google Scholar 

Download references

Acknowledgements

We thank Yuan Li and the other anonymous reviewer(s) for their constructive comments and suggestions. This work is supported by the National Natural Science Foundation of China (NSFC grant No. 42072052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, C., Liu, J. Early planetary processes and light elements in iron-dominated cores. Acta Geochim 41, 625–649 (2022). https://doi.org/10.1007/s11631-021-00522-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-021-00522-x

keywords

Navigation