Skip to main content
Log in

Lunar Seismology: An Update on Interior Structure Models

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

An international team of researchers gathered, with the support of the International Space Science Institute (ISSI), (1) to review seismological investigations of the lunar interior from the Apollo-era and up until the present and (2) to re-assess our level of knowledge and uncertainty on the interior structure of the Moon. A companion paper (Nunn et al. in Space Sci. Rev., submitted) reviews and discusses the Apollo lunar seismic data with the aim of creating a new reference seismic data set for future use by the community. In this study, we first review information pertinent to the interior of the Moon that has become available since the Apollo lunar landings, particularly in the past ten years, from orbiting spacecraft, continuing measurements, modeling studies, and laboratory experiments. Following this, we discuss and compare a set of recent published models of the lunar interior, including a detailed review of attenuation and scattering properties of the Moon. Common features and discrepancies between models and moonquake locations provide a first estimate of the error bars on the various seismic parameters. Eventually, to assess the influence of model parameterisation and error propagation on inverted seismic velocity models, an inversion test is presented where three different parameterisations are considered. For this purpose, we employ the travel time data set gathered in our companion paper (Nunn et al. in Space Sci. Rev., submitted). The error bars of the inverted seismic velocity models demonstrate that the Apollo lunar seismic data mainly constrain the upper- and mid-mantle structure to a depth of ∼1200 km. While variable, there is some indication for an upper mantle low-velocity zone (depth range 100–250 km), which is compatible with a temperature gradient around 1.7 C/km. This upper mantle thermal gradient could be related to the presence of the thermally anomalous region known as the Procellarum Kreep Terrane, which contains a large amount of heat producing elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • K. Aki, B. Chouet, Origin of coda waves: source, attenuation, and scattering effects. J. Geophys. Res. 80(23), 3322–3342 (1975)

    ADS  Google Scholar 

  • D. Antonangeli, G. Morard, N.C. Schmerr, T. Komabayashi, M. Krisch, G. Fiquet, Y. Fei, Toward a mineral physics reference model for the Moon’s core, in Proceedings of the National Academy of Sciences (2015)

    Google Scholar 

  • J. Besserer, F. Nimmo, M.A. Wieczorek, R.C. Weber, W.S. Kiefer, P.J. McGovern, J.C. Andrews-Hanna, D.E. Smith, M.T. Zuber, GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophys. Res. Lett. 41, 5771–5777 (2014). https://doi.org/10.1002/2014GL060240

    Article  ADS  Google Scholar 

  • J.-F. Blanchette-Guertin, C.L. Johnson, J.F. Lawrence, Investigation of scattering in lunar seismic coda. J. Geophys. Res., Planets 117, 06003 (2012). https://doi.org/10.1029/2011JE004042

    Article  ADS  Google Scholar 

  • J.-F. Blanchette-Guertin, C. Johnson, J. Lawrence, Modeling seismic energy propagation in highly scattering environments. J. Geophys. Res., Planets 120(3), 515–537 (2015)

    ADS  Google Scholar 

  • A.S. Buono, D. Walker, The Fe-rich liquidus in the Fe–FeS system from 1 bar to 10 GPa. Geochim. Cosmochim. Acta 75(8), 2072–2087 (2011)

    ADS  Google Scholar 

  • H. Chi, R. Dasgupta, M.S. Duncan, N. Shimizu, Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean—implications for the abundance and origin of volatiles in Earth, Mars, and the Moon. Geochim. Cosmochim. Acta 139(Supplement C), 447–471 (2014)

    ADS  Google Scholar 

  • J.A.D. Connolly, The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10(10) (2009). Q10014. https://doi.org/10.1029/2009GC002540

    Google Scholar 

  • M.R. Cooper, R.L. Kovach, J.S. Watkins, Lunar near-surface structure. Rev. Geophys. Space Phys. 12, 291–308 (1974). https://doi.org/10.1029/RG012i003p00291

    Article  ADS  Google Scholar 

  • A.M. Dainty, M.N. Toksöz, K.R. Anderson, P.J. Pines, Y. Nakamura, G. Latham, Seismic scattering and shallow structure of the Moon in oceanus procellarum. Moon 9, 11–29 (1974). https://doi.org/10.1007/BF00565388

    Article  ADS  Google Scholar 

  • A.M. Dainty, N.R. Goins, M.N. Toksöz, Seismic Investigation of the Lunar Interior, vol. 7 (1976a), p. 181

    Google Scholar 

  • A.M. Dainty, M.N. Toköz, S. Stein, Seismic Investigation of the Lunar Interior, vol. 3 (1976b), pp. 3057–3075

    Google Scholar 

  • M. Drilleau, E. Beucler, A. Mocquet, O. Verhoeven, G. Moebs, G. Burgos, J.-P. Montagner, P. Vacher, A bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves. Geophys. J. Int. 195(2), 1165–1183 (2013). https://doi.org/10.1093/gji/ggt284

    Article  ADS  Google Scholar 

  • A. Duba, H.C. Heard, R.N. Schock, Electrical conductivity of orthopyroxene to 1400 C and the resulting selenotherm, in Lunar and Planetary Science Conference Proceedings, ed. by D.C. Kinsler Lunar and Planetary Science Conference Proceedings, vol. 7 (1976), pp. 3173–3181

    Google Scholar 

  • F. Duennebier, G.H. Sutton, Thermal moonquakes. J. Geophys. Res. 79, 4351–4363 (1974). https://doi.org/10.1029/JB079i029p04351

    Article  ADS  Google Scholar 

  • P. Dyal, C.W. Parkin, W.D. Daily, Structure of the lunar interior from magnetic field measurements, in Lunar and Planetary Science Conference Proceedings, ed. by D.C. Kinsler Lunar and Planetary Science Conference Proceedings, vol. 7 (1976), pp. 3077–3095

    Google Scholar 

  • M. Efroimsky, Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112, 283–330 (2012a). https://doi.org/10.1007/s10569-011-9397-4

    Article  ADS  MathSciNet  Google Scholar 

  • M. Efroimsky, Tidal dissipation compared to seismic dissipation: in small bodies, earths, and super-earths. Astrophys. J. 746, 150 (2012b). https://doi.org/10.1088/0004-637X/746/2/150

    Article  ADS  Google Scholar 

  • Y. Fei, E. Brosh, Experimental study and thermodynamic calculations of phase relations in the Fe–C system at high pressure. Earth Planet. Sci. Lett. 408(0), 155–162 (2014)

    ADS  Google Scholar 

  • C. Frohlich, Y. Nakamura, Possible extra-Solar-System cause for certain lunar seismic events. Icarus 185, 21–28 (2006). https://doi.org/10.1016/j.icarus.2006.07.002

    Article  ADS  Google Scholar 

  • J. Gagnepain-Beyneix, P. Lognonné, H. Chenet, D. Lombardi, T. Spohn, A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet. Inter. 159, 140–166 (2006). https://doi.org/10.1016/j.pepi.2006.05.009

    Article  ADS  Google Scholar 

  • R. Garcia, H. Tkalčić, S. Chevrot, A new global PKP data set to study Earth’s core and deep mantle. Phys. Earth Planet. Inter. 159, 15–31 (2006)

    ADS  Google Scholar 

  • R.F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné, Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188, 96–113 (2011). https://doi.org/10.1016/j.pepi.2011.06.015

    Article  ADS  Google Scholar 

  • M.S. Ghiorso, M.M. Hirschmann, P.W. Reiners, V.C. Kress III, The pMELTS: a revision of melts for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 3(5), 1–35 (2002). https://doi.org/10.1029/2001GC000217

    Article  Google Scholar 

  • K. Gillet, L. Margerin, M. Calvet, M. Monnereau, Scattering attenuation profile of the Moon: implications for shallow moonquakes and the structure of the megaregolith. Phys. Earth Planet. Inter. 262, 28–40 (2017). https://doi.org/10.1016/j.pepi.2016.11.001

    Article  ADS  Google Scholar 

  • N.R. Goins, Lunar seismology: the internal structure of the Moon. Ph.D. thesis, Mass. Inst. of Technol., Cambridge (1978)

  • N.R. Goins, A.M. Dainty, M.N. Toksoz, Lunar seismology—the internal structure of the Moon. J. Geophys. Res. 86, 5061–5074 (1981). https://doi.org/10.1029/JB086iB06p05061

    Article  ADS  Google Scholar 

  • D.H. Green, N.G. Ware, W.O. Hibberson, A. Major, Experimental petrology of Apollo 12 basalts: part 1, sample 12009. Earth Planet. Sci. Lett. 13(1), 85–96 (1971)

    ADS  Google Scholar 

  • Y. Harada, S. Goossens, K. Matsumoto, J. Yan, J. Ping, H. Noda, J. Haruyama, Strong tidal heating in an ultralow-viscosity zone at the core-mantle boundary of the Moon. Nat. Geosci. 7, 569–572 (2014). https://doi.org/10.1038/ngeo2211

    Article  ADS  Google Scholar 

  • E.H. Hauri, A.E. Saal, M.J. Rutherford, J.A. Van Orman, Water in the Moon’s interior: truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015). https://doi.org/10.1016/j.epsl.2014.10.053

    Article  ADS  Google Scholar 

  • S. Hempel, M. Knapmeyer, A.R.T. Jonkers, J. Oberst, Uncertainty of Apollo deep moonquake locations and implications for future network designs. Icarus 220, 971–980 (2012)

    ADS  Google Scholar 

  • B.A. Hobbs, L.L. Hood, F. Herbert, C.P. Sonett, An upper bound on the radius of a highly electrically conducting lunar core. J. Geophys. Res. 88, 97–102 (1983). https://doi.org/10.1029/JB088iS01p00B97

    Article  Google Scholar 

  • L.L. Hood, Geophysical constraints on the lunar interior, in Origin of the Moon, ed. by W.K. Hartmann, R.J. Phillips, G.J. Taylor, 1986, pp. 361–410

    Google Scholar 

  • L.L. Hood, F. Herbert, C.P. Sonett, The deep lunar electrical conductivity profile—structural and thermal inferences. J. Geophys. Res. 87, 5311–5326 (1982). https://doi.org/10.1029/JB087iB07p05311

    Article  ADS  Google Scholar 

  • L.L. Hood, D.L. Mitchell, R.P. Lin, M.H. Acuna, A.B. Binder, Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data. Geophys. Res. Lett. 26, 2327–2330 (1999). https://doi.org/10.1029/1999GL900487

    Article  ADS  Google Scholar 

  • L.L. Hood, M.T. Zuber, in Recent Refinements in Geophysical Constraints on Lunar Origin and Evolution, ed. by R.M. Canup, K. Righter, et al. (2000), pp. 397–409

    Google Scholar 

  • P. Horvath, Analysis of lunar seismic signals—determination of instrumental parameters and seismic velocity distributio. Ph.D. thesis, Univ. of Tex. at Dallas, Richardson (1979)

  • J.S. Huebner, A. Duba, L.B. Wiggins, Electrical conductivity of pyroxene which contains trivalent cations—laboratory measurements and the lunar temperature profile. J. Geophys. Res. 84, 4652–4656 (1979). https://doi.org/10.1029/JB084iB09p04652

    Article  ADS  Google Scholar 

  • Z. Jing, Y. Wang, Y. Kono, T. Yu, T. Sakamaki, C. Park, M.L. Rivers, S.R. Sutton, G. Shen, Sound velocity of Fe–S liquids at high pressure: implications for the Moon’s molten outer core. Earth Planet. Sci. Lett. 396, 78–87 (2014)

    ADS  Google Scholar 

  • H. Kanamori, A. Nur, D. Chung, D. Wones, G. Simmons, Elastic wave velocities of lunar samples at high pressures and their geophysical implications. Science 167, 726–728 (1970)

    ADS  Google Scholar 

  • S.-i. Karato, Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 301, 413–423 (2011). https://doi.org/10.1016/j.epsl.2010.11.038

    Article  ADS  Google Scholar 

  • S.-i. Karato, Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon. Earth Planet. Sci. Lett. 384 (2013). https://doi.org/10.1016/j.epsl.2013.10.001

    ADS  Google Scholar 

  • T. Kawamura, N. Kobayashi, S. Tanaka, P. Lognonné, Lunar Surface Gravimeter as a lunar seismometer: investigation of a new source of seismic information on the Moon. J. Geophys. Res., Planets 120, 343–358 (2015). https://doi.org/10.1002/2014JE004724

    Article  ADS  Google Scholar 

  • A. Khan, K. Mosegaard, An inquiry into the lunar interior: a nonlinear inversion of the Apollo lunar seismic data. J. Geophys. Res., Planets 107, 3-1–3-23 (2002). https://doi.org/10.1029/2001JE001658

    Article  Google Scholar 

  • A. Khan, K. Mosegaard, Further constraints on the deep lunar interior. Geophys. Res. Lett. 32, 22203 (2005). https://doi.org/10.1029/2005GL023985

    Article  ADS  Google Scholar 

  • A. Khan, T.J. Shankland, A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth Planet. Sci. Lett. 317, 27–43 (2012). https://doi.org/10.1016/j.epsl.2011.11.031

    Article  ADS  Google Scholar 

  • A. Khan, K. Mosegaard, K.L. Rasmussen, A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data. Geophys. Res. Lett. 27, 1591–1594 (2000). https://doi.org/10.1029/1999GL008452

    Article  ADS  Google Scholar 

  • A. Khan, K. Mosegaard, J.G. Williams, P. Lognonné, Does the Moon possess a molten core? Probing the deep lunar interior using results from LLR and Lunar Prospector. J. Geophys. Res., Planets 109, 09007 (2004). https://doi.org/10.1029/2004JE002294

    Article  ADS  Google Scholar 

  • A. Khan, J.A.D. Connolly, N. Olsen, K. Mosegaard, Constraining the composition and thermal state of the Moon from an inversion of electromagnetic lunar day-side transfer functions. Earth Planet. Sci. Lett. 248(3), 579–598 (2006b). https://doi.org/10.1016/j.epsl.2006.04.008

    Article  ADS  Google Scholar 

  • A. Khan, J. Maclennan, S.R. Taylor, J.A.D. Connolly, Are the Earth and the moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling. J. Geophys. Res., Planets 111(E5), E05005 (2006a). https://doi.org/10.1029/2005JE002608

    Article  ADS  Google Scholar 

  • A. Khan, J.A.D. Connolly, J. Maclennan, K. Mosegaard, Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys. J. Int. 168, 243–258 (2007). https://doi.org/10.1111/j.1365-246X.2006.03200.x

    Article  ADS  Google Scholar 

  • A. Khan, A. Pommier, G.A. Neumann, K. Mosegaard, The lunar moho and the internal structure of the Moon: a geophysical perspective. Tectonophysics 609, 331–352 (2013). https://doi.org/10.1016/j.tecto.2013.02.024. Moho: 100 years after Andrija Mohorovicic

    Article  ADS  Google Scholar 

  • A. Khan, J.A.D. Connolly, A. Pommier, J. Noir, Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J. Geophys. Res., Planets 119(10), 2197–2221 (2014). https://doi.org/10.1002/2014JE004661

    Article  ADS  Google Scholar 

  • M. Knapmeyer, TTBox: a Matlab toolbox for the computation of 1D teleseismic travel times. Seismol. Res. Lett. 75(6), 726–733 (2004). https://doi.org/10.1785/gssrl.75.6.726

    Article  Google Scholar 

  • T. Komabayashi, Thermodynamics of melting relations in the system Fe–FeO at high pressure: implications for oxygen in the Earth’s core. J. Geophys. Res., Solid Earth 2014, 010980 (2014)

    Google Scholar 

  • A.S. Konopliv, R.S. Park, D.-N. Yuan, S.W. Asmar, M.M. Watkins, J.G. Williams, E. Fahnestock, G. Kruizinga, M. Paik, D. Strekalov, N. Harvey, D.E. Smith, M.T. Zuber, The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL primary mission. J. Geophys. Res., Planets 118, 1415–1434 (2013). https://doi.org/10.1002/jgre.20097

    Article  ADS  Google Scholar 

  • R.L. Kovach, J.S. Watkins, Apollo 17 seismic profiling: probing the lunar crust. Science 180, 1063–1064 (1973a). https://doi.org/10.1126/science.180.4090.1063

    Article  ADS  Google Scholar 

  • R.L. Kovach, J.S. Watkins, The structure of the lunar crust at the Apollo 17 site, in Lunar and Planetary Science Conference Proceedings, vol. 4 (1973b), p. 2549

    Google Scholar 

  • V.A. Kronrod, O.L. Kuskov, Inversion of seismic and gravity data for the composition and core sizes of the Moon. Izv. Phys. Solid Earth 47, 711–730 (2011). https://doi.org/10.1134/S1069351311070044

    Article  ADS  Google Scholar 

  • O.L. Kuskov, D.K. Belashchenko, Thermodynamic properties of Fe–S alloys from molecular dynamics modeling: implications for the lunar fluid core. Phys. Earth Planet. Inter. 258, 43–50 (2016). https://doi.org/10.1016/j.pepi.2016.07.006

    Article  ADS  Google Scholar 

  • O.L. Kuskov, V.A. Kronrod, Constitution of the Moon5. Constraints on composition, density, temperature, and radius of a core. Phys. Earth Planet. Inter. 107, 285–306 (1998). https://doi.org/10.1016/S0031-9201(98)00082-X

    Article  ADS  Google Scholar 

  • O.L. Kuskov, V.A. Kronrod, Geochemical constraints on the model of the composition and thermal conditions of the Moon according to seismic data. Izv. Phys. Solid Earth 45, 753–768 (2009). https://doi.org/10.1134/S1069351309090043

    Article  ADS  Google Scholar 

  • D.R. Lammlein, Lunar seismicity and tectonics. Phys. Earth Planet. Inter. 14, 224–273 (1977). https://doi.org/10.1016/0031-9201(77)90175-3

    Article  ADS  Google Scholar 

  • M. Laneuville, M.A. Wieczorek, D. Breuer, N. Tosi, Asymmetric thermal evolution of the Moon. J. Geophys. Res., Planets 118, 1435–1452 (2013). https://doi.org/10.1002/jgre.20103

    Article  ADS  Google Scholar 

  • M. Laneuville, M.A. Wieczorek, D. Breuer, J. Aubert, G. Morard, T. Rückriemen, A long-lived lunar dynamo powered by core crystallization. Earth Planet. Sci. Lett. 401, 251–260 (2014)

    ADS  Google Scholar 

  • M. Laneuville, J. Taylor, M.A. Wieczorek, Distribution of radioactive heat sources and thermal history of the Moon. J. Geophys. Res., Planets 123(12), 3144–3166 (2018). https://doi.org/10.1029/2018JE005742

    Article  ADS  Google Scholar 

  • E. Larose, A. Khan, Y. Nakamura, M. Campillo, Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett. 32, 16201 (2005). https://doi.org/10.1029/2005GL023518

    Article  ADS  Google Scholar 

  • G.V. Latham, M. Ewing, F. Press, G. Sutton, J. Dorman, Y. Nakamura, N. Toksöz, R. Wiggins, J. Derr, F. Duennebier, Passive seismic experiment. Science 167(3918), 455–457 (1970a). https://doi.org/10.1126/science.167.3918.455

    Article  ADS  Google Scholar 

  • G. Latham, M. Ewing, J. Dorman, F. Press, N. Toksöz, G. Sutton, R. Meissner, F. Duennebier, Y. Nakamura, R. Kovach, M. Yates, Seismic data from man-made impacts on the Moon. Science 170(3958), 620–626 (1970b). https://doi.org/10.1126/science.170.3958.620

    Article  ADS  Google Scholar 

  • F.G. Lemoine, S. Goossens, T.J. Sabaka, J.B. Nicholas, E. Mazarico, D.D. Rowlands, B.D. Loomis, D.S. Chinn, D.S. Caprette, G.A. Neumann, D.E. Smith, M.T. Zuber, High-degree gravity models from GRAIL primary mission data. J. Geophys. Res., Planets 118, 1676–1698 (2013). https://doi.org/10.1002/jgre.20118

    Article  ADS  Google Scholar 

  • F.G. Lemoine, S. Goossens, T.J. Sabaka, J.B. Nicholas, E. Mazarico, D.D. Rowlands, B.D. Loomis, D.S. Chinn, G.A. Neumann, D.E. Smith, M.T. Zuber, GRGM900C: a degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett. 41, 3382–3389 (2014). https://doi.org/10.1002/2014GL060027

    Article  ADS  Google Scholar 

  • P. Lognonné, C.L. Johnson, Planetary seismology. Treatise Geophys. 10, 69–122 (2007)

    Google Scholar 

  • P. Lognonné, J. Gagnepain-Beyneix, H. Chenet, A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth Planet. Sci. Lett. 211, 27–44 (2003). https://doi.org/10.1016/S0012-821X(03)00172-9

    Article  ADS  Google Scholar 

  • J. Longhi, Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation. Geochim. Cosmochim. Acta 70(24), 5919–5934 (2006)

    ADS  Google Scholar 

  • L. Margerin, G. Nolet, Multiple scattering of high-frequency seismic waves in the deep earth: Modeling and numerical examples. J. Geophys. Res., Solid Earth 108(B5) (2003). https://doi.org/10.1029/2002JB001974

  • K. Matsumoto, R. Yamada, F. Kikuchi, S. Kamata, Y. Ishihara, T. Iwata, H. Hanada, S. Sasaki, Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geophys. Res. Lett. 42, 7351–7358 (2015). https://doi.org/10.1002/2015GL065335

    Article  ADS  Google Scholar 

  • I. Matsuyama, F. Nimmo, J.T. Keane, N.H. Chan, G.J. Taylor, M.A. Wieczorek, W.S. Kiefer, J.G. Williams, GRAIL, LLR, and LOLA constraints on the interior structure of the Moon. Geophys. Res. Lett. 43, 8365–8375 (2016). https://doi.org/10.1002/2016GL069952

    Article  ADS  Google Scholar 

  • E. Mazarico, M.K. Barker, G.A. Neumann, M.T. Zuber, D.E. Smith, Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter. Geophys. Res. Lett. 41, 2282–2288 (2014). https://doi.org/10.1002/2013GL059085

    Article  ADS  Google Scholar 

  • K. Miljković, M.A. Wieczorek, G.S. Collins, S.C. Solomon, D.E. Smith, M.T. Zuber, Excavation of the lunar mantle by basin-forming impact events on the Moon. Earth Planet. Sci. Lett. 409, 243–251 (2015). https://doi.org/10.1016/j.epsl.2014.10.041

    Article  ADS  Google Scholar 

  • G. Morard, J. Bouchet, A. Rivoldini, D. Antonangeli, M. Roberge, E. Boulard, A. Denoeud, M. Mezouar, Liquid properties in the Fe–FeS system under moderate pressure: tool box to model small planetary cores. Am. Mineral. 103(11), 1770–1779 (2018). https://doi.org/10.2138/am-2018-6405

    Article  Google Scholar 

  • K. Mosegaard, A. Tarantola, Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res., Solid Earth 100(B7), 12431–12447 (1995). https://doi.org/10.1029/94JB03097

    Article  Google Scholar 

  • Y. Nakamura, Seismic energy transmission in the lunar surface zone determined from signals generated by movement of lunar rovers. Bull. Seismol. Soc. Am. 66, 593–606 (1976)

    ADS  Google Scholar 

  • Y. Nakamura, Seismic velocity structure of the lunar mantle. J. Geophys. Res. 88, 677–686 (1983). https://doi.org/10.1029/JB088iB01p00677

    Article  ADS  Google Scholar 

  • Y. Nakamura, Farside deep moonquakes and deep interior of the Moon. J. Geophys. Res. 110 (2005). https://doi.org/10.1029/2004JE002332

  • Y. Nakamura, in Planetary Seismology: Early Observational Results, ed. by V.C.H. Tong, R.A.E. García (Cambridge University Press, Cambridge, 2015), pp. 91–106. https://doi.org/10.1017/CBO9781107300668.010

    Chapter  Google Scholar 

  • Y. Nakamura, J. Koyama, Seismic Q of the lunar upper mantle. J. Geophys. Res. 87, 4855–4861 (1982). https://doi.org/10.1029/JB087iB06p04855

    Article  ADS  Google Scholar 

  • Y. Nakamura, D. Lammlein, G. Latham, M. Ewing, J. Dorman, F. Press, N. Toksoz, New seismic data on the state of the deep lunar interior. Science 181, 49–51 (1973). https://doi.org/10.1126/science.181.4094.49

    Article  ADS  Google Scholar 

  • Y. Nakamura, G. Latham, D. Lammlein, M. Ewing, F. Duennebier, J. Dorman, Deep lunar interior inferred from recent seismic data. Geophys. Res. Lett. 1, 137–140 (1974). https://doi.org/10.1029/GL001i003p00137

    Article  ADS  Google Scholar 

  • Y. Nakamura, F.K. Duennebier, G.V. Latham, H.J. Dorman, Structure of the lunar mantle. J. Geophys. Res. 81, 4818–4824 (1976). https://doi.org/10.1029/JB081i026p04818

    Article  ADS  Google Scholar 

  • Y. Nakamura, G.V. Latham, H.J. Dorman, A.-B.K. Ibrahim, J. Koyama, P. Horvath, Shallow moonquakes—depth, distribution and implications as to the present state of the lunar interior, in Lunar and Planetary Science Conference, 10th, Houston, Tex., March 19–23, 1979, Proceedings, vol. 3 (1979), pp. 2299–2309

    Google Scholar 

  • Y. Nakamura, G.V. Latham, H.J. Dorman, Apollo lunar seismic experiment—final summary, in Lunar and Planetary Science Conference Proceedings, ed. by W.V. Boynton, T.J. Ahrens. Lunar and Planetary Science Conference Proceedings, vol. 13 (1982), p. 117

    Google Scholar 

  • F. Nimmo, U.H. Faul, E.J. Garnero, Dissipation at tidal and seismic frequencies in a melt-free Moon. J. Geophys. Res. 117, 09005 (2012). https://doi.org/10.1029/2012JE004160

    Article  Google Scholar 

  • K. Nishida, A. Suzuki, H. Terasaki, Y. Shibazaki, Y. Higo, S. Kuwabara, Y. Shimoyama, M. Sakurai, M. Ushioda, E. Takahashi, T. Kikegawa, D. Wakabayashi, N. Funamori, Towards a consensus on the pressure and composition dependence of sound velocity in the liquid Fe–S system. Phys. Earth Planet. Inter. 257, 230–239 (2016)

    ADS  Google Scholar 

  • C. Nunn, R.F. Garcia, Y. Nakamura, A.G. Marusiak, T. Kawamura, D. Sun, L. Margerin, R. Weber, , M. Drilleau, M.A. Wieczorek, A. Khan, A. Rivoldini, P. Lognonne, P. Zhu, Lunar seismology: a data and instrumentation review. Space Sci. Rev. (submitted)

  • J. Oberst, Meteoroids near the Earth–Moon System as Inferred from Temporal and Spatial Distribution of Impacts Detected by the Lunar Seismic Network. Ph.D. thesis, Univ. of Tex. at Austin (1989)

  • J.-P. Poirier, Introduction to the Physics of the Earth’s Interior (2000), p. 326

    Google Scholar 

  • N. Rai, W. van Westrenen, Lunar core formation: new constraints from metal–silicate partitioning of siderophile elements. Earth Planet. Sci. Lett. 388(0), 343–352 (2014)

    ADS  Google Scholar 

  • A. Ricolleau, Y. Fei, A. Corgne, J. Siebert, J. Badro, Oxygen and silicon contents of Earth’s core from high pressure metal-silicate partitioning experiments. Earth Planet. Sci. Lett. 310(3–4), 409–421 (2011)

    ADS  Google Scholar 

  • K. Righter, M.J. Drake, Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996)

    ADS  Google Scholar 

  • K. Righter, B.M. Go, K.A. Pando, L. Danielson, D.K. Ross, Z. Rahman, L.P. Keller, Phase equilibria of a low s and C lunar core: implications for an early lunar dynamo and physical state of the current core. Earth Planet. Sci. Lett. 463, 323–332 (2017)

    ADS  Google Scholar 

  • M. Sambridge, Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys. J. Int. 138, 479–494 (1999). https://doi.org/10.1046/j.1365-246X.1999.00876.x

    Article  ADS  Google Scholar 

  • H. Sato, M.C. Fehler, T. Maeda, Seismic Wave Propagation and Scattering in the Heterogeneous Earth (Springer, Berlin, 2012)

    MATH  Google Scholar 

  • A. Scheinberg, K.M. Soderlund, G. Schubert, Magnetic field generation in the lunar core: the role of inner core growth. Icarus 254, 62–71 (2015)

    ADS  Google Scholar 

  • P.C. Sellers, Seismic evidence for a low-velocity lunar core. J. Geophys. Res. 97, 11663–11672 (1992)

    ADS  Google Scholar 

  • C. Sens-Schönfelder, E. Larose, Temporal changes in the lunar soil from correlation of diffuse vibrations. Phys. Rev. E 78(4), 045601 (2008). https://doi.org/10.1103/PhysRevE.78.045601

    Article  ADS  Google Scholar 

  • P.M. Shearer, Introduction to Seismology, 2nd edn. (Cambridge University Press, Cambridge, 2009). https://doi.org/10.1017/CBO9780511841552

    Book  Google Scholar 

  • H. Shimizu, M. Matsushima, F. Takahashi, H. Shibuya, H. Tsunakawa, Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite. Icarus 222, 32–43 (2013). https://doi.org/10.1016/j.icarus.2012.10.029

    Article  ADS  Google Scholar 

  • Y. Shimoyama, H. Terasaki, S. Urakawa, Y. Takubo, S. Kuwabara, S. Kishimoto, T. Watanuki, A. Machida, Y. Katayama, T. Kondo, Thermoelastic properties of liquid Fe–C revealed by sound velocity and density measurements at high pressure. J. Geophys. Res., Solid Earth 121(11), 7984–7995 (2016)

    ADS  Google Scholar 

  • D.E. Smith, M.T. Zuber, G.B. Jackson, J.F. Cavanaugh, G.A. Neumann, H. Riris, X. Sun, R.S. Zellar, C. Coltharp, J. Connelly, R.B. Katz, I. Kleyner, P. Liiva, A. Matuszeski, E.M. Mazarico, J.F. McGarry, A.-M. Novo-Gradac, M.N. Ott, C. Peters, L.A. Ramos-Izquierdo, L. Ramsey, D.D. Rowlands, S. Schmidt, V.S. Scott, G.B. Shaw, J.C. Smith, J.-P. Swinski, M.H. Torrence, G. Unger, A.W. Yu, T.W. Zagwodzki, The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter mission. Space Sci. Rev. 150, 209–241 (2010). https://doi.org/10.1007/s11214-009-9512-y

    Article  ADS  Google Scholar 

  • D. Sollberger, C. Schmelzbach, J.O.A. Robertsson, S.A. Greenhalgh, Y. Nakamura, A. Khan, The shallow elastic structure of the lunar crust: new insights from seismic wavefield gradient analysis. Geophys. Res. Lett. 43(19), 10078–10087 (2016). https://doi.org/10.1002/2016GL070883

    Article  ADS  Google Scholar 

  • C.P. Sonett, Electromagnetic induction in the Moon. Rev. Geophys. Space Phys. 20, 411–455 (1982). https://doi.org/10.1029/RG020i003p00411

    Article  ADS  Google Scholar 

  • F.D. Stacey, P.M. Davis, Physics of the Earth (2008)

    MATH  Google Scholar 

  • E.S. Steenstra, Y. Lin, N. Rai, M. Jansen, W. van Westrenen, Carbon as the dominant light element in the lunar core. Am. Mineral. 102(1), 92 (2017)

    ADS  Google Scholar 

  • E.S. Steenstra, A.X. Seegers, J. Eising, B.G.J. Tomassen, F.P.F. Webers, J. Berndt, S. Klemme, S. Matveev, W. van Westrenen, Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements. Geochim. Cosmochim. Acta 231, 130–156 (2018)

    ADS  Google Scholar 

  • L. Stixrude, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals—I. Physical properties. Geophys. J. Int. 162, 610–632 (2005). https://doi.org/10.1111/j.1365-246X.2005.02642.x

    Article  ADS  Google Scholar 

  • S.R. Taylor, G.J. Taylor, L.A. Taylor, The Moon: a Taylor perspective. Geochim. Cosmochim. Acta 70, 5904–5918 (2006). https://doi.org/10.1016/j.gca.2006.06.262

    Article  ADS  MATH  Google Scholar 

  • B. Tittmann, Lunar rock Q in 3000–5000 range achieved in laboratory. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 285(1327), 475–479 (1977)

    ADS  Google Scholar 

  • B. Tittmann, M. Abdel-Gawad, R. Housley, Elastic velocity and Q factor measurements on Apollo 12, 14, and 15 rocks, in Lunar and Planetary Science Conference Proceedings, vol. 3 (1972), pp. 2565–2575

    Google Scholar 

  • B. Tittmann, J. Curnow, R. Housley, Internal friction quality factor Q greater than or equal to 3100 achieved in lunar rock 70215,85, in Lunar and Planetary Science Conference Proceedings, vol. 6 (1975), pp. 3217–3226

    Google Scholar 

  • B. Tittmann, L. Ahlberg, J. Curnow, Internal friction and velocity measurements, in Lunar and Planetary Science Conference Proceedings, vol. 7 (1976), pp. 3123–3132

    Google Scholar 

  • B. Tittmann, H. Nadler, J. Richardson, L. Ahlberg, Laboratory measurements of p-wave seismic Q on lunar and analog rocks, in Lunar and Planetary Science Conference Proceedings, vol. 9 (1978), pp. 3627–3635

    Google Scholar 

  • M.N. Toksoz, A.M. Dainty, S.C. Solomon, K.R. Anderson, Structure of the Moon. Rev. Geophys. Space Phys. 12, 539–567 (1974)

    ADS  Google Scholar 

  • H. Urey, The Planets: Their Origin and Development (Yale University Press, New Haven, 1952), p. 245

    Google Scholar 

  • M. van Kan Parker, C. Sanloup, N. Sator, B. Guillot, E.J. Tronche, J.-P. Perrillat, M. Mezouar, N. Rai, W. van Westrenen, Neutral buoyancy of titanium-rich melts in the deep lunar interior. Nat. Geosci. 5, 186–189 (2012). https://doi.org/10.1038/ngeo1402

    Article  ADS  Google Scholar 

  • L. Vinnik, H. Chenet, J. Gagnepain-Beyneix, P. Lognonne, First seismic receiver functions on the Moon. Geophys. Res. Lett. 28, 3031–3034 (2001). https://doi.org/10.1029/2001GL012859

    Article  ADS  Google Scholar 

  • H. Wang, T. Todd, D. Weidner, G. Simmons, Elastic properties of Apollo 12 rocks, in Lunar and Planetary Science Conference Proceedings, vol. 2 (1971), pp. 2327–2336

    Google Scholar 

  • N. Warren, E. Schreiber, C. Scholz, J. Morrison, P. Norton, M. Kumazawa, O. Anderson, Elastic and thermal properties of Apollo 11 and Apollo 12 rocks, in Lunar and Planetary Science Conference Proceedings, vol. 2 (1971), p. 2345

    Google Scholar 

  • R.C. Weber, P. Lin, E.J. Garnero, Q. Williams, P. Lognonné, Seismic detection of the lunar core. Science 331, 309 (2011). https://doi.org/10.1126/science.1199375

    Article  ADS  Google Scholar 

  • M.A. Wieczorek, Gravity and topography of the terrestrial planets, in Treatise on Geophysics, 2nd edn., ed. by T. Spohn, G. Schubert, vol. 10 (Elsevier-Pergamon, Oxford, 2015), pp. 153–193. https://doi.org/10.1016/B978-0-444-53802-4.00169-X

    Chapter  Google Scholar 

  • M.A. Wieczorek, B.L. Jolliff, A. Khan, M.E. Pritchard, B.O. Weiss, J.G. Williams, L.L. Hood, K. Righter, C.R. Neal, C.K. Shearer, I.S. McCallum, S. Tompkins, B.R. Hawke, C. Peterson, J.J. Gillis, B. Bussey, The constitution and structure of the lunar interior. Rev. Mineral. Geochem. 60, 221–364 (2006). https://doi.org/10.2138/rmg.2006.60.3

    Article  Google Scholar 

  • M.A. Wieczorek, G.A. Neumann, F. Nimmo, W.S. Kiefer, G.J. Taylor, H.J. Melosh, R.J. Phillips, S.C. Solomon, J.C. Andrews-Hanna, S.W. Asmar, A.S. Konopliv, F.G. Lemoine, D.E. Smith, M.M. Watkins, J.G. Williams, M.T. Zuber, The crust of the Moon as seen by GRAIL. Science 339(6120), 671–675 (2013). https://doi.org/10.1126/science.1231530

    Article  ADS  Google Scholar 

  • J.G. Williams, D.H. Boggs, Tides on the Moon: theory and determination of dissipation. J. Geophys. Res., Planets 120, 689–724 (2015). https://doi.org/10.1002/2014JE004755

    Article  ADS  Google Scholar 

  • J.G. Williams, D.H. Boggs, C.F. Yoder, J.T. Ratcliff, J.O. Dickey, Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001a). https://doi.org/10.1029/2000JE001396

    Article  ADS  Google Scholar 

  • J.G. Williams, D.H. Boggs, C.F. Yoder, J.T. Ratcliff, J.O. Dickey, Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001b)

    ADS  Google Scholar 

  • J.G. Williams, D.H. Boggs, W.M. Folkner, De430 lunar orbit, physical librations, and surface coordinates. IOM 335-JW,DB,WF-20130722-016, Jet Propul. Lab., Pasadena, Calif., 22 July 2013

  • J.G. Williams, A.S. Konopliv, D.H. Boggs, R.S. Park, D.-N. Yuan, F.G. Lemoine, S. Goossens, E. Mazarico, F. Nimmo, R.C. Weber, S.W. Asmar, H.J. Melosh, G.A. Neumann, R.J. Phillips, D.E. Smith, S.C. Solomon, M.M. Watkins, M.A. Wieczorek, J.C. Andrews-Hanna, J.W. Head, W.S. Kiefer, I. Matsuyama, P.J. McGovern, G.J. Taylor, M.T. Zuber, Lunar interior properties from the GRAIL mission. J. Geophys. Res., Planets 119, 1546–1578 (2014). https://doi.org/10.1002/2013JE004559

    Article  ADS  Google Scholar 

  • B.A. Wyatt, The melting and crystallisation behaviour of a natural clinopyroxene-ilmenite intergrowth. Contrib. Mineral. Petrol. 61(1), 1–9 (1977)

    ADS  MathSciNet  Google Scholar 

  • T. Yoshino, Laboratory electrical conductivity measurement of mantle minerals. Surv. Geophys. 31(2), 163–206 (2010). https://doi.org/10.1007/s10712-009-9084-0

    Article  ADS  Google Scholar 

  • T. Yoshino, T. Katsura, Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite. Earth Planet. Sci. Lett. 337, 56–67 (2012). https://doi.org/10.1016/j.epsl.2012.05.023

    Article  ADS  Google Scholar 

  • N. Zhao, P. Zhu, B. Zhang, Y. Yuan, Moonquake relocation. Earth Sci., J. China Univ. Geosci. 40, 1276–1286 (2015)

    Google Scholar 

  • S. Zhong, C. Qin, G. A, J. Wahr, Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior? Geophys. Res. Lett. 39(15) (2012). https://doi.org/10.1029/2012GL052362

Download references

Acknowledgements

We acknowledge ISSI Bern and ISSI Beijing for providing support to our international research team. This work was granted access to the HPC resources of CINES under the allocation A0050407341 made by GENCI. Internal structure models and quake locations presented in this study are available in electronic form at the following https://doi.org/10.5281/zenodo.3372489.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael F. Garcia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(ZIP 3.7 MB)

Appendices

Appendices

1.1 A.1 Appendix

This appendix provides the numerical values of the median of internal structure model distributions of M1, M2, and M3 inversions.

Table 11 Seismic velocity (in km/s) and density (in g/cm−3) models as a function of depth (in km) extracted from M1, M2 and M3 inversions. M1 and M2 models show the median values of the distributions, as well as the \(1\sigma \) uncertainties. For M3 the best misfit model is shown

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, R.F., Khan, A., Drilleau, M. et al. Lunar Seismology: An Update on Interior Structure Models. Space Sci Rev 215, 50 (2019). https://doi.org/10.1007/s11214-019-0613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-019-0613-y

Keywords

Navigation