Skip to main content
Log in

Loss and Fractionation of Noble Gas Isotopes and Moderately Volatile Elements from Planetary Embryos and Early Venus, Earth and Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Here we discuss the current state of knowledge on how atmospheric escape processes can fractionate noble gas isotopes and moderately volatile rock-forming elements that populate primordial atmospheres, magma ocean related environments, and catastrophically outgassed steam atmospheres. Variations of isotopes and volatile elements in different planetary reservoirs keep information about atmospheric escape, composition and even the source of accreting material. We summarize our knowledge on atmospheric isotope ratios and discuss the latest evidence that proto-Venus and Earth captured small H2-dominated primordial atmospheres that were lost by hydrodynamic escape during and after the disk dispersed. All relevant thermal and non-thermal atmospheric escape processes that can fractionate various isotopes and volatile elements are discussed. Erosion of early atmospheres, crust and mantle by large planetary impactors are also addressed. Further, we discuss how moderately volatile elements such as the radioactive heat producing element 40K and other rock-forming elements such as Na can also be outgassed and lost from magma oceans that originate on large planetary embryos and accreting planets. Outgassed elements escape from planetary embryos with masses that are \(\leq M_{\mathrm{Moon}}\) directly, or due to hydrodynamic drag of escaping H atoms originating from primordial- or steam atmospheres at more massive embryos. We discuss how these processes affect the final elemental composition and ratios such as K/U, Fe/Mg of early planets and their building blocks. Finally, we review modeling efforts that constrain the early evolution of Venus, Earth and Mars by reproducing their measured present day atmospheric 36Ar/38Ar, 20Ne/22Ne, noble gas isotope ratios and the role of isotopes on the loss of water and its connection to the redox state on early Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • A.M. Abdrakhimov, A.T. Basilevsky, Geology of the Venera and Vega landing-site regions. Sol. Syst. Res. 36, 136–159 (2002)

    ADS  Google Scholar 

  • F. Albarède, J. Blichert-Toft, The split fate of the early Earth, Mars, Venus, and Moon. C. R. Géosci. 339, 917–927 (2007)

    Google Scholar 

  • C.J. Allegre, T. Staudacher, P. Sarda, Rare gas systematics – formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet. Sci. Lett. 81, 127–150 (1987)

    ADS  Google Scholar 

  • U.V. Amerstorfer, N.V. Erkaev, D. Langmayr, H.K. Biernat, On Kelvin Helmholtz instability due to the solar wind interaction with unmagnetized planets. Planet. Space Sci. 55, 1811–1816 (2007)

    ADS  Google Scholar 

  • U.V. Amerstorfer, H. Gröller, H.I.M. Lichtenegger, H. Lammer, F. Tian, L. Noack, M. Scherf, C. Johnstone, L. Tu, M. Güdel, Escape and evolution of Mars’s CO2 atmosphere: influence of suprathermal atoms. J. Geophys. Res., Planets 122, 1321–1337 (2017)

    ADS  Google Scholar 

  • E. Anders, N. Grevesse, Abundances of the elements - Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    ADS  Google Scholar 

  • S. Aoki, H. Nakagawa, H. Sagawa, M. Giuranna, G. Sindoni, A. Aronica, Y. Kasaba, Seasonal variation of the HDO/H2O ratio in the atmosphere of Mars at the middle of northern spring and beginning of northern summer. Icarus 260, 7–22 (2015)

    ADS  Google Scholar 

  • R. Arevalo, W.F. McDonough, M. Luong, The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Icarus 278, 361–369 (2009)

    Google Scholar 

  • S.K. Atreya, M.G. Trainer, H.B. Franz, M.H. Wong (the SAM Team), Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss. Geophys. Res. Lett. 40, 5605–5609 (2013)

    ADS  Google Scholar 

  • G. Avice, B. Marty, Perspectives on atmospheric evolution from Xe and nitrogen isotopes on Earth, Mars & Venus. Space Sci. Rev. (2020, this issue)

  • G. Avice, D.V. Bekaert, H. Chennaoui Aoudjehane, B. Marty, Noble gases and nitrogen in Tissint reveal the composition of the Mars atmosphere. Geochem. Perspect. Lett. 6, 11–16 (2018a)

    Google Scholar 

  • G. Avice, B. Marty, R. Burgess, A. Hofmann, P. Philippot, K.J. Zahnle, D. Zakharov, Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochim. Cosmochim. Acta 232, 82–100 (2018b)

    ADS  Google Scholar 

  • K.H. Baines, S.K. Atreya, M.A. Bullock, D.H. Grinspoon, P. Mahaffy, C.T. Russell, G. Schubert, K. Zahnle, The atmospheres of the terrestrial planets: Clues to the origins and early evolution of Venus, Earth, and Mars, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (University of Arizona Press, Tucson, 2013), pp. 137–160, 610 pp.

    Google Scholar 

  • A. Bar-Nun, S. Chang, Photochemical reactions of water and carbon monoxide in Earth’s primitive atmosphere. J. Geophys. Res., Oceans 88(C11), 6662–6672 (1983)

    ADS  Google Scholar 

  • A. Bar-Nun, H. Hartman, Synthesis of organic compounds from carbon monoxide and water by UV photolysis. Orig. Life 9(2), 93–101 (1978)

    ADS  Google Scholar 

  • A.T. Basilevsky, J.W. Head, G.G. Schaber, R.G. Strom, The resurfacing history of Venus, in Venus II, ed. by W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), p. 1047

    Google Scholar 

  • S.J. Bauer, H. Lammer, Planetary Aeronomy: Atmosphere Environments in Planetary Systems (Springer, New York, 2004), p. 207

    Google Scholar 

  • R.H. Becker, R.N. Clayton, E.M. Galimov, H. Lammer, B. Marty, R.O. Pepin, R. Wieler, Isotopic signatures of volatiles in terrestrial planets. Space Sci. Rev. 106, 377–410 (2003)

    ADS  Google Scholar 

  • M.R. Benedikt, M. Scherf, H. Lammer, E. Marcq, P. Odert, M. Leitzinger, N.V. Erkaev, Escape of rock-forming volatile elements and noble gases from planetary embryos. Icarus 347, 113772 (2020). https://doi.org/10.1016/j.icarus.2020.113772

    Article  Google Scholar 

  • J.-L. Bertaux, A.-C. Vandaele, O. Korablev (the SPICAV/SOIR Team), A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450, 646–649 (2007)

    ADS  Google Scholar 

  • N.Z. Boctor, C.M.O. Alexander, J. Wang, E. Hauri, The sources of water in Martian meteorites: clues from hydrogen isotopes. Geochim. Cosmochim. Acta 67, 3971–3989 (2003)

    ADS  Google Scholar 

  • J. Bollard, J.N. Connelly, M.J. Whitehouse, E.A. Pringle, L. Bonal, J.K. Jørgensen, Å. Nordlund, F. Moynier, M. Bizzarro, Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, 1–9 (2017)

    Google Scholar 

  • A.S. Bonomo, L. Zeng, M. Damasso, Z.M. Leinhardt, A.B. Justesen (the Kepler Team), A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system. Nat. Astron. 3, 416–423 (2019)

    ADS  Google Scholar 

  • A. Bonsor, Z.M. Leinhardt, P.J. Carter, T. Elliott, M.J. Walter, S.T. Stewart, A collisional origin to Earth’s non-chondritic composition? Icarus 247, 291–300 (2015)

    ADS  Google Scholar 

  • A. Bouvier, M. Boyet, Primitive Solar System materials and Earth share a common initial 142Nd abundance. Nature 537, 399–402 (2016)

    ADS  Google Scholar 

  • L. Bouvier, M. Costa, J. Connelly, N. Jensen, D. Wielandt, M. Storey, A. Nemchin, M. Whitehouse, J. Snape, J. Bellucci, F. Moynier, A. Agranier, B. Gueguen, M. Schönbächler, M. Bizzarro, Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 586–589 (2018)

    ADS  Google Scholar 

  • G. Budde, C. Burkhardt, T. Kleine, Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019). https://doi.org/10.1038/s41550-019-0779-y

    Article  ADS  Google Scholar 

  • C. Burger, C.M. Schäfer, Applicability and limits of simple hydrodynamic scaling for collisions of water-rich bodies in different mass regimes, in Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems (2014), pp. 63–81. arXiv:1704.06075

    Google Scholar 

  • C. Burger, T.I. Maindl, C. Schäfer, Transfer, loss and physical processing of water in hit-and run collisions of planetary embryos. Celest. Mech. Dyn. Astron. 130, 2 (2018)

    ADS  Google Scholar 

  • C. Burkhardt, N. Dauphas, U. Hans, B. Bourdon, T. Kleine, Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs. Geochim. Cosmochim. Acta 261, 145–170 (2019)

    ADS  Google Scholar 

  • A.G.W. Cameron, Origin of the atmospheres of the terrestrial planets. Icarus 56, 195–201 (1983)

    ADS  Google Scholar 

  • G. Caro, B. Bourdon, J.-L. Birck, S. Moorbath, High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006)

    ADS  Google Scholar 

  • M.H. Carr, J.W. Head Jr., Martian surface/near – surface water inventory: Sources, sinks, and changes with time. Geophys. Res. Lett. 42, 726–732 (2015)

    ADS  Google Scholar 

  • P.J. Carter, Z.M. Leinhardt, T. Elliott, M.J. Walter, S.T. Stewart, Compositional evolution during rocky protoplanet accretion. Astrophys. J. 460, 276–286 (2015)

    Google Scholar 

  • P.J. Carter, Z.M. Leinhardt, T. Elliot, S.T. Stewart, M.J. Walter, Collisional stripping of planetary crusts. Earth Planet. Sci. Lett. 484, 276–286 (2018)

    ADS  Google Scholar 

  • P. Cartigny, B. Marty, Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9, 359–366 (2013)

    Google Scholar 

  • W.S. Cassata, Meteorite constraints on Martian atmospheric loss and paleoclimate. Earth Planet. Sci. Lett. 479, 322–329 (2017)

    ADS  Google Scholar 

  • W.S. Cassata, D.L. Shuster, P.R. Renne, B.P. Weiss, Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/39Ar thermochronometry of Martian meteorites. Geochim. Cosmochim. Acta 74, 6900–6920 (2010)

    ADS  Google Scholar 

  • J.W. Chamberlain, Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11, 901–996 (1963)

    ADS  Google Scholar 

  • E. Chassefière, Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res. 101, 26039–26056 (1996a)

    ADS  Google Scholar 

  • E. Chassefière, Hydrodynamic escape of oxygen from primitive atmospheres: applications to the cases of Venus and Mars. Icarus 124, 537–552 (1996b)

    ADS  Google Scholar 

  • E. Chassefière, Note: loss of water on the young Venus: the effect of a strong primitive solar wind. Icarus 126, 229–232 (1997)

    ADS  Google Scholar 

  • A. Chau, C. Reinhardt, R. Helled, J. Stadel, Forming mercury by giant impacts. Astrophys. J. 865, 35 (2018)

    ADS  Google Scholar 

  • R.N. Clayton, Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993)

    ADS  Google Scholar 

  • M.S. Clement, N.A. Kaib, J.E. Chambers, Dynamical constraints in Mercury’s collisional origin. Astrophys. J. 157, 208 (2019)

    ADS  Google Scholar 

  • P.G. Conrad, C.A. Malespin, H.B. Franz, R.O. Pepin, M.G. Trainer, S.P. Schwenzer, S.K. Atreya, C. Freissinet, J.H. Jones, H. Manning, T. Owen, A.A. Pavlova, R.C. Wiens, M.H. Wong, P.R. Mahaffy, In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth Planet. Sci. Lett. 454, 1–9 (2016)

    ADS  Google Scholar 

  • A. Coustenis, F.W. Taylor, Titan: exploring an Earth-like world, in Series on Atmospheric, Oceanic and Planetary Physics, vol. 4, ed. by A. Coustenis, F.W. Taylor 2nd edn. (World Scientific Publishing, Singapore, 2008), pp. 154–155

    Google Scholar 

  • P.E. Cubillos, N.V. Erkaev, I. Juvan, L. Fossati, C.P. Johnstone, H. Lammer, M. Lendl, P. Odert, K.G. Kislyakova, An overabundance of low-density Neptune-like planets. Mon. Not. R. Astron. Soc. 466, 1868–1879 (2017a)

    ADS  Google Scholar 

  • P.E. Cubillos, L. Fossati, N.V. Erkaev, M. Malik, T. Tokano, M. Lendl, C.P. Johnstone, H. Lammer, A. Wyttenbach, Aerosol constraints on the atmosphere of the hot Saturn-mass planet WASP-49b. Astrophys. J. 849, 145–154 (2017b)

    ADS  Google Scholar 

  • I. Dandouras, M. Blanc, L. fossati, M. Gerasimov, E.W. Guenther, K.G. Kislyakova, H. Lammer, Y. Lin, B. Marty, S. Rugheimer, C. Sotin, S. Tachibana, P. Wurz, M. Yamauchi, Future missions related to isotope and element measurements. Space Sci. Rev. (2020, this issue)

  • N. Dauphas, The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017)

    ADS  Google Scholar 

  • D. de Niem, E. Kührt, A. Morbidelli, U. Motschmann, Atmospheric erosion and replenishment induced by impacts upon the Earth and Mars during a heavy bombardment. Icarus 221, 495–507 (2012)

    ADS  Google Scholar 

  • I. de Pater, J.J. Lissauer, Planetary Sciences (Cambridge University Press, Cambridge, 2015), ISBN: 9781316165270. https://doi.org/10.1017/CBO9781316165270

    Book  Google Scholar 

  • G. di Achille, B.M. Hynek, Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3, 459–463 (2010)

    ADS  Google Scholar 

  • T.M. Donahue, New analysis of hydrogen and deuterium escape from Venus. Icarus 141, 226–235 (1999)

    ADS  Google Scholar 

  • T.M. Donahue, R. Hartle, Solar cycle variations in H+ and D+ densities in the Venus ionosphere - implications for escape. Geophys. Res. Lett. 19, 2449–2452 (1992)

    ADS  Google Scholar 

  • T.M. Donahue, J.H. Hoffman, R.R. Hodges Jr., A.J. Watson, Venus was wet: A measurement of the ratio of D/H. Science 216, 630–633 (1982)

    ADS  Google Scholar 

  • G. Dreibus, H. Wänke, Volatiles on Earth and Mars: A comparison. Icarus 71, 225–240 (1987)

    ADS  Google Scholar 

  • J.M. Eiler, N. Kitchen, T.A. Rahn, Experimental constraints on the stable-isotope systematics of CO2 ice/vapor systems and relevance to the study of Mars. Geochim. Cosmochim. Acta 64(4), 733–746 (2000)

    ADS  Google Scholar 

  • J.M. Eiler, J.W. Valley, C.M. Graham, J. Fournelle, Two populations of carbonate in ALH84001: Geochemical evidence for discrimination and genesis. Geochim. Cosmochim. Acta 66(7), 1285–1303 (2002)

    ADS  Google Scholar 

  • L.T. Elkins-Tanton, Linked magma ocean solidication and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008)

    ADS  Google Scholar 

  • L.T. Elkins-Tanton, Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012)

    ADS  Google Scholar 

  • N.V. Erkaev, H. Lammer, L.T. Elkins-Tanton, A. Stökl, P. Odert, E. Marcq, E.A. Dorfi, K.G. Kislyakova, Yu.N. Kulikov, M. Leitzinger, M. Güdel, Escape of the Martian protoatmosphere and initial water inventory. Planet. Space Sci. 98, 106–119 (2014)

    ADS  Google Scholar 

  • N.V. Erkaev, H. Lammer, P. Odert, Yu.N. Kulikov, K.G. Kislyakova, Extreme hydrodynamic atmospheric loss near the critical thermal escape regime. Mon. Not. R. Astron. Soc. 448, 1916–1921 (2015)

    ADS  Google Scholar 

  • N.V. Erkaev, H. Lammer, P. Odert, K.G. Kislyakova, C.P. Johnstone, M. Güdel, M.L. Khodachenko, EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Mon. Not. R. Astron. Soc. 460, 1300–1309 (2016)

    ADS  Google Scholar 

  • B. Fegley Jr., N.S. Jacobson, K.B. Williams, J.M.C. Plane, L. Schaefer, K. Lodders, Solubility of rock in steam atmospheres of planets. Astrophys. J. 824, 103 (2016)

    ADS  Google Scholar 

  • E.D. Feigelson, G.P. Garmire, S.H. Pravdo, Magnetic flaring in the pre-main-sequence Sun and implications for the early solar system. Astrophys. J. 572, 335–349 (2002)

    ADS  Google Scholar 

  • C.N. Foley, M. Wadhwa, L.E. Borg, P.E. Janney, R. Hines, T.L. Grove, The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005)

    ADS  Google Scholar 

  • L. Fossati, N.V. Erkaev, H. Lammer, P.E. Cubillos, P. Odert, I. Juvan, K.G. Kislyakova, M. Lendl, D. Kubyshkina, S.J. Bauer, Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron. Astrophys. 598, A90–A99 (2017)

    ADS  Google Scholar 

  • J.L. Fox, On the escape of oxygen and hydrogen from Mars. Geophys. Res. Lett. 20, 1847–1850 (1993a)

    Google Scholar 

  • J.L. Fox, The production and escape of nitrogen atoms on Mars. J. Geophys. Res. 98, 3297–3310 (1993b)

    ADS  Google Scholar 

  • J.L. Fox, S.W. Bougher, Structure, luminosity, and dynamics of the Venus thermosphere. Space Sci. Rev. 55, 357 (1991)

    ADS  Google Scholar 

  • J.L. Fox, A. Dalgarno, Nitrogen escape from Mars. J. Geophys. Res. 88, 9027–9032 (1983)

    ADS  Google Scholar 

  • J.L. Fox, A. Hać, The 15N/14N isotope fractionation in dissociative recombination of \(\mbox{N}_{2}^{+}\). J. Geophys. Res., Planets 102, 9191–9204 (1997)

    ADS  Google Scholar 

  • J.L. Fox, A. Hać, Velocity distribution of C atoms in CO+ dissociative recombination: implications for photochemical escape of C from Mars. J. Geophys. Res. 104, 24729–24737 (1999)

    ADS  Google Scholar 

  • E. Füri, B. Marty, Nitrogen isotope variations in the Solar System. Nat. Geosci. 8, 515–522 (2015)

    ADS  Google Scholar 

  • F. Gaillard, B. Scaillet, A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014)

    ADS  Google Scholar 

  • E.M. Galimov, The Biological Fractionation of Isotopes (Academ. Press, Toronto, 1985), p. 262

    Google Scholar 

  • E.M. Galimov, On the phenomenon of enrichment of Mars in 13C: a suggestion on the reduced initial atmosphere. Icarus 147(2), 472–476 (2000)

    ADS  Google Scholar 

  • E.M. Galimov, Isotopic criteria for identification of organic carbon on Earth and meteorites. Space Sci. Rev. 106, 249–262 (2003)

    ADS  Google Scholar 

  • S.B. Ganguli, The polar wind. Rev. Geophys. 34, 311 (1996)

    ADS  Google Scholar 

  • H. Genda, Y. Abe, Survival of a proto-atmosphere through the stage of giant impacts: The mechanical aspects. Icarus 164, 149–162 (2003)

    ADS  Google Scholar 

  • H. Genda, Y. Abe, Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005)

    ADS  Google Scholar 

  • H. Genda, I. Masahiro, Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus 194, 42–52 (2008)

    ADS  Google Scholar 

  • C. Gillmann, E. Chassefière, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009)

    ADS  Google Scholar 

  • M.M. Grady, I.P. Wright, C.T. Pillinger, A nitrogen and argon stable isotope study of Allan Hills 84001: implications for the evolution of the Martian atmosphere. Meteorit. Planet. Sci. 33, 795–802 (1998)

    ADS  Google Scholar 

  • J.P. Greenwood, S. Itoh, N. Sakamoto, E.P. Vicenzi, H. Yurimoto, Hydrogen isotope evidence for loss of water from Mars through time. Geophys. Res. Lett. 35, L05203 (2008)

    ADS  Google Scholar 

  • R.E. Grimm, K.P. Harrison, D.E. Stillman, M.R. Kirchoff, On the secular retention of ground water and ice on Mars. J. Geophys. Res., Planets 122, 94–109 (2017)

    ADS  Google Scholar 

  • D.H. Grinspoon, Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993)

    ADS  Google Scholar 

  • M. Güdel, The young Sun and relevance for planet evolution. Space Sci. Rev. (2020, this issue)

  • J.H. Guo, The effect of photoionization on the loss of water of the planet. Astrophys. J. 872, 1 (2019)

    Google Scholar 

  • N. Haghighipour, T.I. Maindl, C.M. Schaefer, O.J. Wandel, Triggering the activation of main belt comets: the effect of porosity. Astrophys. J. 855, 60 (2018). arXiv:1801.08247

    ADS  Google Scholar 

  • I. Halevy, W.W. Fischer, J.M. Eiler, Carbonates in the Martian meteorite Allan Hills 84001 formed at 18±4 C in a near-surface aqueous environment. Proc. Natl. Acad. Sci. 108(41), 16895–16899 (2011)

    ADS  Google Scholar 

  • L.J. Hallis, G.J. Taylor, K. Nagashima, G.R. Huss, Hydrogen isotope analyses of alteration phases in the nakhlite Martian meteorites. Geochim. Cosmochim. Acta 97, 105–119 (2012)

    ADS  Google Scholar 

  • C.L. Harper, S.B. Jacobsen, Noble gases and Earth’s accretion. Science 273, 1814–1818 (1996)

    ADS  Google Scholar 

  • T.M. Harrison, The Hadean crust: Evidence from \(> 4\) Ga zircons. Annu. Rev. Earth Planet. Sci. 37, 479–505 (2009)

    ADS  Google Scholar 

  • E. Hartle, J.M. Grebowsky, Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. 98, 7437–7445 (1993)

    ADS  Google Scholar 

  • C.D. Herd, L.E. Borg, J.H. Jones, J.J. Papike, Oxygen fugacity and geochemical variations in the martian basalts: Implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta 66(11), 2025–2036 (2002)

    ADS  Google Scholar 

  • R.C. Hin, C.D. Coath, P.J. Carter, F. Nimmo, Y.J. Lai, P.A.E. Pogge von Strandmann, M. Willbold, Z.M. Leinhardt, M.J. Walter, T. Elliott, Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549, 511–515 (2017)

    ADS  Google Scholar 

  • J.H. Hoffman, R.R. Hodges Jr., T.M. Donahue, M.B. McElroy, Composition of the Venus lower atmosphere from the Pioneer Venus spectrometer. J. Geophys. Res. 85, 7882–7890 (1980)

    ADS  Google Scholar 

  • R. Hu, D.M. Kass, B.L. Ehlmann, Y.L. Yung, Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Commun. 6, 10003 (2015)

    ADS  Google Scholar 

  • E.M. Hunten, The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 1481–1494 (1973)

    ADS  Google Scholar 

  • E.M. Hunten, R.O. Pepin, J.C.G. Walker, Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987)

    ADS  Google Scholar 

  • K.S. Hutchins, B.M. Jakosky, Evolution of Martian atmospheric argon: implications for sources of volatiles. J. Geophys. Res. 101, 14933–14950 (1996)

    ADS  Google Scholar 

  • M. Ikoma, H. Genda, Constraints on the mass of a habitable planet with water of nebular origin. Astrophys. J. 648, 696–706 (2006)

    ADS  Google Scholar 

  • M. Ikoma, L.T. Elkins-Tanton, K. Hamano, J. Suckale, Water portioning in planetary embryos and protoplanets with magma oceans. Space Sci. Rev. 214(4), 76 (2018). https://doi.org/10.1007/s11214-018-0508-3

    Article  ADS  Google Scholar 

  • N.K. Inamdar, H.E. Schlichting, Stealing the gas: Giant impacts and the large diversity in exoplanet densities. Astrophys. J. 817, L13 (2016)

    ADS  Google Scholar 

  • V.G. Istomin, K.V. Grechnev, C.A. Kochnev, Mass spectrometry of the lower atmosphere of Venus: Krypton isotopes and other recent results of the Venera-11 and -12 data processing, in 23rd COSPAR Meeting, Budapest, Hungary (1980a)

    Google Scholar 

  • V.G. Istomin, K.V. Grechnev, C.A. Kochnev, Mass spectrometer measurements of the lower atmosphere of Venus. Space Res. 20, 215–218 (1980b)

    Google Scholar 

  • A. Izidoro, S.N. Raymond, Formation of terrestrial planets, in Handbook of Exoplanets, ed. by H. Deeg, J. Belmonte (Springer, Heidelberg, 2018), pp. 2365–2423

    Google Scholar 

  • B.M. Jakosky, R.O. Pepin, R.E. Johnson, J.L. Fox, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994)

    ADS  Google Scholar 

  • B.M. Jakosky, M. Slipski, M. Benna (the MAVEN Team), Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science 355, 1408–1410 (2017)

    ADS  MathSciNet  Google Scholar 

  • B.M. Jakosky, D. Brain, M. Chaffin, S. Curry, J. Deighan (the MAVEN Team), Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315, 146–157 (2018)

    ADS  Google Scholar 

  • M. Javoy, E. Kaminski, F. Guyot, D. Ansrault, C. Sanloup, M. Moreira, S. Labrosse, A. Jambon, P. Agrinier, A. Davaille, C. Jaupart, The chemical composition of the Earth: Enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010)

    ADS  Google Scholar 

  • A.M. Jellinek, M.G. Jackson, Connections between the bulk composition, geodynamics and habitability of Earth. Nat. Geosci. 8, 587–593 (2015)

    ADS  Google Scholar 

  • S. Jin, C. Mordasini, Compositional imprints in density-distance-time: A rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation. Astrophys. J. 853, 163–186 (2018)

    ADS  Google Scholar 

  • A. Johansen, M. Lambrechts, Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017)

    ADS  Google Scholar 

  • R.E. Johnson, Energetic Charged Particle Interactions with Atmospheres and Surfaces (Springer, Berlin, 1990)

    Google Scholar 

  • N.M. Johnson, Venus atmospheric composition in situ data: a compilation. Earth Space Sci. 6, 1299–1318 (2019)

    ADS  Google Scholar 

  • C.P. Johnstone, M. Güdel, A. Stökl, H. Lammer, L. Tu, K.G. Kislyakova, T. Lüftinger, P. Odert, N.V. Erkaev, A.E. Dorfi, The evolution of stellar rotation and the hydrogen atmospheres of habitable-one terrestrial planets. Astrophys. J. 815, L12 (2015)

    ADS  Google Scholar 

  • C.P. Johnstone, M. Güdel, H. Lammer, K.G. Kislyakova, Upper atmospheres of terrestrial planets: Carbon dioxide cooling and the Earth’s thermospheric evolution. Astron. Astrophys. 617, A107 (2018)

    ADS  Google Scholar 

  • C.P. Johnstone, M.L. Khodachenko, T. Lüftinger, K.G. Kislyakova, H. Lammer, M. Güdel, Extreme hydrodynamic losses of Earth-like atmospheres in the habitable zones of very active stars. Astron. Astrophys. 624, L10 (2019)

    ADS  Google Scholar 

  • J.F. Kasting, J.B. Pollack, Loss of water from Venus. I - hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983)

    ADS  Google Scholar 

  • E.S. Kite, Geologic constraints on early Mars climate. Space Sci. Rev. 215, 10 (2019)

    ADS  Google Scholar 

  • T.T. Koskinen, M.J. Harris, R.V. Yelle, P. Lavvas, The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical dynamical model of the thermosphere. Icarus 226, 1678–1694 (2013)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, Variations of the HDO/H2O ratio in the martian atmosphere and loss of water from Mars. Icarus 257, 377–386 (2015)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, P.D. Feldman, Detection of molecular hydrogen in the atmosphere of Mars. Science 294, 1914–1917 (2001)

    ADS  Google Scholar 

  • M.A. Kreslavsky, M.A. Ivanov, J.W. Head, The resurfacing history of Venus: Constraints from buffered crater densities. Icarus 250, 438–450 (2015)

    ADS  Google Scholar 

  • T.S. Kruijer, C. Burkhardt, G. Budde, T. Kleine, Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl. Acad. Sci. 114, 6712–6716 (2017)

    ADS  Google Scholar 

  • T.S. Kruijer, L.E. Borg, J. Wimpenny, S. Sio, K. Corliss, Onset of magma ocean solidification on Mars inferred from Mn-Cr chronometry. Earth Planet. Sci. Lett. 542, 116315 (2020)

    Google Scholar 

  • D. Kubyshkina, L. Fossati, N.V. Erkaev, P.E. Cubillos, C.P. Johnstone, K.G. Kislyakova, H. Lammer, M. Lendl, P. Odert, Overcoming the limitations of the energy-limited approximation for planet atmospheric escape. Astrophys. J. Lett. 866, L18 (2018a)

    ADS  Google Scholar 

  • D. Kubyshkina, L. Fossati, N.V. Erkaev, C.P. Johnstone, P.E. Cubillos, K.G. Kislyakova, H. Lammer, M. Lendl, P. Odert, Grid of upper atmosphere models for 1-40M planets: application to CoRoT-7 b and HD 219134 b,c. Astron. Astrophys. 619, A151, 21 pp. (2018b)

    ADS  Google Scholar 

  • D. Kubyshkina, M. Lendl, L. Fossati, P. Cubillos, H. Lammer, N.V. Erkaev, C.P. Johnstone, Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet k2-33b. Astron. Astrophys. 612, A25, 10 pp. (2018c)

    ADS  Google Scholar 

  • Y.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Penz, D. Breuer, T. Spohn, R. Lundin, H.K. Biernat, A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus, and Mars. Space Sci. Rev. 129(1–3), 207–243 (2007)

    ADS  Google Scholar 

  • T. Kurahashi-Nakamura, E. Tajika, Atmospheric collapse and transport of carbon dioxide into the subsurface on early Mars. Geophys. Res. Lett. 33, L18205 (2006)

    ADS  Google Scholar 

  • H. Kurokawa, M. Sato, M. Ushioda, T. Matsuyama, R. Moriwaki, J.M. Dohm, T. Usui, Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in martian meteorites. Earth Planet. Sci. Lett. 394, 179–185 (2014)

    ADS  Google Scholar 

  • H. Kurokawa, T. Usui, M. Sato, Interactive evolution of multiple water-ice reservoirs on Mars: insights from hydrogen isotope compositions. Geochem. J. 50, 67–79 (2016)

    ADS  Google Scholar 

  • H. Kurokawa, K. Kurisawa, T. Usil, A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus 299, 443–459 (2018)

    ADS  Google Scholar 

  • H. Lammer, C. Kolb, T. Penz, U.V. Amerstorfer, H.K. Biernat, B. Bodiselitsch, Estimation of the past and present Martian water-ice reservoirs by isotopic constraints on exchange between the atmosphere and the surface. Int. J. Astrobiol. 2, 195–202 (2003a)

    ADS  Google Scholar 

  • H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, S.J. Bauer, Loss of water from Mars: Implications for the oxidation of the soil. Icarus 165, 9–25 (2003b)

    ADS  Google Scholar 

  • H. Lammer, H.I.M. Lichtenegger, H.K. Biernat, N.V. Erkaev, I.L. Arshukova, C. Kolb, H. Gunell, A. Lukyanov, M. Holmström, S. Barabash, T.L. Zhang, W. Baumjohann, Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006)

    ADS  Google Scholar 

  • H. Lammer, E. Chassefière, Ö. Karatekin, A. Morschhauser, P.B. Niles, O. Mousis, P. Odert, U.V. Möstl, D. Breuer, V. Dehant, M. Grott, H. Gröller, E. Hauber, L.B. Pham, Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013)

    ADS  Google Scholar 

  • H. Lammer, A. Stökl, N.V. Erkaev, E.A. Dorfi, P. Odert, M. Güdel, K.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439, 3225–3238 (2014)

    ADS  Google Scholar 

  • H. Lammer, N.V. Erkaev, L. Fossati, I. Juvan, P. Odert, P.E. Cubillos, E. Guenther, K.G. Kislyakova, C.P. Johnstone, T. Lüftinger, M. Güdel, Identifying the ‘true’ radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. Mon. Not. R. Astron. Soc. 461, L62–L66 (2016)

    ADS  Google Scholar 

  • H. Lammer, A.L. Zerkle, S. Gebauer, N. Tosi, L. Noack, M. Scherf, E. Pilat-Lohinger, M. Güdel, J.L. Grenfell, M. Godolt, A. Nikolaou, Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astron. Astrophys. Rev. 26(2), 72 (2018)

    Google Scholar 

  • H. Lammer, M. Leitzinger, M. Scherf, P. Odert, C. Burger, D. Kubyshkina, C.P. Johnstone, T. Maindl, C.M. Schäfer, M. Güdel, N. Tosi, A. Nikolaou, E. Marcq, N.V. Erkaev, L. Noak, K.G. Kisylakova, L. Fossati, E. Pilat-Lohinger, F. Ragossnig, E.A. Dorfi, Constraining the early evolution of Venus and Earth through atmospheric Ar, Ne isotope and bulk K/U ratios. Icarus 339, 1–25 (2020b)

    Google Scholar 

  • H. Lammer, R. Brasser, A. Johansen, M. Scherf, M. Leitzinger, Formation of Venus, Earth and Mars: Constrained by isotopes. Space Sci. Rev. (2020a, this issue)

  • T.J. Lapen, M. Righter, A.D. Brandon, V. Debaille, B.L. Beard, J.T. Shafer, A.H. Peslier, A younger age for ALH 84001 and its geochemical link to Shergottite sources in Mars. Science 328, 347–351 (2010)

    ADS  Google Scholar 

  • F. Leblanc, E. Chassefière, C. Gillmann, D. Breuer, Mars’ atmospheric 40Ar: a tracer for past crustal erosion. Icarus 218, 561–570 (2012)

    ADS  Google Scholar 

  • T. Lebrun, H. Massol, E. Chassefière, A. Davaille, E. Marcq, P. Sarda, F. Leblanc, G. Brandeis, Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res., Planets 118, 1155–1176 (2013)

    ADS  Google Scholar 

  • C. Lécuyer, P. Gillet, F. Robert, The hydrogen isotope composition of seawater and the global water cycle. Chem. Geol. 145, 249–261 (1998)

    ADS  Google Scholar 

  • J.-Y. Lee, M. Kurt, J.P. Severenghaus, K. Kawamura, H.-S. Yoo, J.B. Lee, J.S. Kim, A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70, 4507–4512 (2006)

    ADS  Google Scholar 

  • T. Lichtenberg, G.J. Golabek, T.V. Gerya, M.R. Meyer, The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus 274, 350–365 (2016)

    ADS  Google Scholar 

  • T. Lichtenberg, G.J. Golabek, C.P. Dullemond, M. Schönbächler, T.V. Gerya, M.R. Meyer, Impact splash chondrule formation during planetesimal recycling. Icarus 302, 27–43 (2017)

    ADS  Google Scholar 

  • Ø. Lie-Svendsen, M.H. Rees, Helium escape from the terrestrial atmosphere: The ion outflow mechanism. J. Geophys. Res. 101, 2435–2443 (1996)

    ADS  Google Scholar 

  • R.J. Lillis, S. Robbins, M. Manga, J.S. Halekas, H.V. Frey, Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res., Planets 118(7), 1488–1511 (2013)

    ADS  Google Scholar 

  • S.-F. Liu, Y. Hori, D.N.C. Lin, E. Asphaug, Giant impact: An efficient mechanism for the devolatilization of super-Earths. Astrophys. J. 812, 164, 9 pp. (2015)

    ADS  Google Scholar 

  • K. Lodders, An oxygen isotope mixing model for the accretion and composition of rocky planets. Space Sci. Rev. 92, 341–354 (2000)

    ADS  Google Scholar 

  • K. Lodders, H. Palme, H.-P. Gail, Abundances of the Elements in the Solar System. Solar System, Landolt-Börnstein - Group VI. Astron. Astrophys., vol. 4B (Springer, Berlin, 2009), p. 712

    Google Scholar 

  • J. Longhi, Phase equilibrium in the system CO2-H2O: application to Mars. J. Geophys. Res. 111, E06011 (2006)

    ADS  Google Scholar 

  • R. Lundin, Ion acceleration and outflow from Mars and Venus: An overview. Space Sci. Rev. 162, 309–334 (2011)

    ADS  Google Scholar 

  • J.I. Lunine, Y.L. Yung, R.D. Lorenz, On the volatile inventory of Titan from isotopic abundances in nitrogen and methane. Planet. Space Sci. 47, 1291–1303 (1999)

    ADS  Google Scholar 

  • J.I. Lunine, J. Chambers, A. Morbidelli, L.A. Leshin, The origin of water on Mars. Icarus 165, 1–8 (2003)

    ADS  Google Scholar 

  • P.R. Mahaffy, R.C. Webster, M. Cabane (the SAM Team), The Sample Analysis at Mars investigation and instrument suite. Space Sci. Rev. 70, 401–478 (2012)

    ADS  Google Scholar 

  • P.R. Mahaffy, M. Cabane, C.R. Webster (the SAM Team), Sample Analysis at Mars (SAM) investigation: Overview of results from the first 120 sols on Mars (abstract), in Lunar Planet. Sci. Conf. 44th, Abstract #1395 (Lunar and Planetary Institute, Houston, 2013a)

    Google Scholar 

  • P.R. Mahaffy, C.R. Webster, S.K. Atreya, H. Franz, M. Wong (the MSL Science Team), Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 341, 263–266 (2013b)

    ADS  Google Scholar 

  • P.R. Mahaffy, C.R. Webster, J.C. Stern, A.E. Brunner, S.K. Atreya (the MSL Science Team), The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347, 412–414 (2015)

    ADS  Google Scholar 

  • T.I. Maindl, R. Dvorak, H. Lammer, M. Güdel, C. Schäfer, R. Speith, P. Odert, N.V. Erkaev, K.G. Kislyakova, E. Pilat-Lohinger, Impact induced surface heating by planetesimals on early Mars. Astron. Astrophys. 574, A22 (2015)

    ADS  Google Scholar 

  • K. Mandt, J.H. Waite, W. Lewis, B. Magee, J. Bell, J. Lunine, O. Mousis, D. Cordier, Isotopic evolution of the major constituents of Titan’s atmosphere based on Cassini data. Planet. Space Sci. 57, 1917–1930 (2009)

    ADS  Google Scholar 

  • K. Mandt, O. Mousis, J. Lunine, D. Gautier, Protosolar ammonia as the unique source of Titan’s nitrogen. Astrophys. J. Lett. 788, L24 (2014)

    ADS  Google Scholar 

  • K. Mandt, O. Mousis, E. Chassefière, Isotopic evolution of the major constituents of Titan’s atmosphere based on Cassini data. Icarus 254, 259–261 (2015)

    ADS  Google Scholar 

  • C.V. Manning, C.P. McKay, K.J. Zahnle, The nitrogen cycle on Mars: impact decomposition of near-surface nitrates as a source for a nitrogen steady state. Icarus 197, 60–64 (2008)

    ADS  Google Scholar 

  • E. Marcq, A simple 1-D radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets. J. Geophys. Res., Planets 117, 1–9 (2012)

    Google Scholar 

  • E. Marcq, A. Salvador, H. Massol, A. Davaille, Thermal radiation of magma ocean planets using a 1-D radiative-convective model of H2O-CO2 atmospheres. J. Geophys. Res., Planets 122, 1539–1553 (2017)

    ADS  Google Scholar 

  • A. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012)

    ADS  Google Scholar 

  • B. Marty, P. Allé, Neon and Argon isotopic constraints on Earth-atmosphere evolution, in Noble Gas Geochem. Cosmochem., ed. by J. Matsuda (Terra Sci. Pub., Tokyo, 1994), pp. 191–204

    Google Scholar 

  • H. Massol, K. Hamano, F. Tian, M. Ikoma, Y. Abe, E. Chassefíere, A. Davaille, H. Genda, M. Güdel, Y. Hori, F. Leblanc, E. Marcq, P. Sarda, V.I. Shematovich, A. Stökl, H. Lammer, Formation and evolution of protoatmospheres. Space Sci. Rev. 205, 153–211 (2016)

    ADS  Google Scholar 

  • K.J. Mathew, K. Marti, Early evolution of Martian volatiles: nitrogen and noble gas components in ALH84001 and Chassigny. J. Geophys. Res. 106, 1401–1422 (2001)

    ADS  Google Scholar 

  • M.B. McElroy, Y.L. Yung, Isotopic composition of nitrogen: implications for the past history of Mars’ atmosphere. Science 194, 70–72 (1976)

    ADS  Google Scholar 

  • H.Y. McSween, G.J. Taylor, M.B. Wyatt, Elemental composition of the Martian crust. Science 324(5928), 736–739 (2009)

    ADS  Google Scholar 

  • P.J. Michael, The concentration, behavior and storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism. Geochim. Cosmochim. Acta 52, 555–566 (1988)

    ADS  Google Scholar 

  • K.E. Miller, C.R. Glein, J.H. Waite Jr., Contributions form accreted organics to Titan’s atmosphere: New insights from cometary and chondritic data. Astrophys. J. 871(59), 1–13 (2019)

    ADS  Google Scholar 

  • H. Mizuno, K. Nakazawa, C. Hayashi, Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet. Sci. Lett. 50, 202–210 (1980)

    ADS  Google Scholar 

  • T. Montmerle, J.-C. Augereau, M. Chaussidon, M. Gounelle, B. Marty, A. Morbidelli, Solar System formation and early evolution: the first 100 million years. Earth Moon Planets 98, 39–95 (2006)

    ADS  Google Scholar 

  • M. Moreira, S. Charnoz, The origin of the neon isotopes in chondrites and on Earth. Earth Planet. Sci. Lett. 433, 249–256 (2016)

    ADS  Google Scholar 

  • S. Mukhopadhyay, Early differentiation and volatile accretion recorded in neon and xenon. Nature 486, 101–106 (2012)

    ADS  Google Scholar 

  • F. Mullally, J.L. Coughlin, S.E. Thompson, J. Rowe, C. Burke (the Kepler team), Planetary candidates observed by Kepler. VI. Planet sample from Q1-Q16 (47 months). Astrophys. J. Suppl. Ser. 217, 31–47 (2015)

    ADS  Google Scholar 

  • V.R. Murthy, W. van Westrenen, Y. Fei, Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature 423, 163–165 (2003)

    ADS  Google Scholar 

  • S.V.S. Murty, R.K. Mohapatra, Nitrogen and heavy noble gases in ALH 84001: signatures of ancient Martian atmosphere. Geochim. Cosmochim. Acta 61, 5417–5428 (1997)

    ADS  Google Scholar 

  • A. Nikolaou, N. Katyal, N. Tosi, M. Godolt, J.L. Grenfell, H. Rauer, What factors affect the duration and outgassing of the terrestrial magma ocean? Astrophys. J. 875, 1, 24 pp. (2019)

    ADS  Google Scholar 

  • F. Nimmo, Thermal and compositional evolution of the core. Treatise Geophys. 9, 201–209 (2007)

    Google Scholar 

  • P. Odert, H. Lammer, N.V. Erkaev, A. Nikolaou, H.I.M. Lichtenegger, C.P. Johnstone, K.G. Kislyakova, M. Leitzinger, N. Tosi, Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus 307, 327–346 (2018)

    ADS  Google Scholar 

  • H.S.C. O’Neill, H. Palme, Collisional erosion and the non-chondritic composition of the terrestrial planets. Philos. Trans. R. Soc. A 366, 4205–4238 (2008)

    ADS  Google Scholar 

  • C. O’Neill, A.M. Jellinek, H.S.C. O’Neill, On the distribution of radioactive heat producing elements within meteorites, the Earth, and planets. Space Sci. Rev. (2020, this issue)

  • R. Orosei, S.E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini, B. Cosciotti, F. Di Paolo, E. Flamini, E. Mattei, M. Pajola, F. Soldovieri, M. Cartacci, F. Cassenti, A. Frigeri, S. Giuppi, R. Martufi, A. Masdea, G. Mitri, C. Nenna, R. Noschese, M. Restano, R. Seu, Radar evidence of subglacial liquid water on Mars. Science 361, 490–493 (2018)

    ADS  Google Scholar 

  • J.E. Owen, Y. Wu, Atmospheres of low-mass planets: the “boil-off”. Astrophys. J. 817, 107, 14 pp. (2016)

    ADS  Google Scholar 

  • M. Ozima, F.A. Podosek, Noble Gas Geochemistry, 2nd edn. (Cambridge Univ., New York, 2002), 300 pp.

    Google Scholar 

  • K. Pahlevan, L. Schaefer, M.M. Hirschmann, Magma ocean outgassing and hydrogen isotopic constraints on the Hadean Earth. Earth Planet. Sci. Lett. 526, 115770 (2019)

    Google Scholar 

  • H. Palme, H.St.C. O’Neill, Cosmochemical estimates of mantle composition, in Treatise on Geochemistry, vol. 2 (2003), pp. 664–676

    Google Scholar 

  • A.M. Palumbo, J.W. Head, L. Wilson, Rainfall on Noachian Mars: nature, timing, and influence on geologic processes and climate history. Icarus 347, 664–676 (2020)

    Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)

    ADS  Google Scholar 

  • R.O. Pepin, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991)

    ADS  Google Scholar 

  • R.O. Pepin, Evolution of the Martian atmosphere. Icarus 111, 289–304 (1994)

    ADS  Google Scholar 

  • R.O. Pepin, Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–156 (1997)

    ADS  Google Scholar 

  • R.O. Pepin, On the isotopic composition of primordial xenon in terrestrial planet atmospheres. Space Sci. Rev. 92, 371–395 (2000)

    ADS  Google Scholar 

  • R.O. Pepin, D. Porcelli, Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002)

    Google Scholar 

  • R.O. Pepin, D. Schulter, R. Becker, D. Reisenfeld, Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochim. Cosmochim. Acta 89, 62–80 (2012)

    ADS  Google Scholar 

  • S. Péron, M. Moreira, A. Colin, L. Arbaret, B. Putlitz, M.D. Kurz, Neon isotopic composition of the mantle constrained by single vesicle analyses. Earth Planet. Sci. Lett. 449, 145–154 (2016)

    ADS  Google Scholar 

  • S. Péron, M. Moreira, B. Putlitz, M.D. Kurz, Solar wind implantation supplied light volatiles during the first stage of Earth accretion. Geochem. Perspect. Lett. 3, 151–159 (2017)

    Google Scholar 

  • M. Persson, Y. Futaana, A. Fedorov, H. Nilsson, M. Hamrin, S. Barabash, H+/O+ escape rate ratio in the Venus magnetotail and its dependence on the solar cycle. Geophys. Res. Lett. 45, 10805–10811 (2018)

    ADS  Google Scholar 

  • J.P. Pinto, G.R. Gladstone, Y.L. Yung, Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210, 183–185 (1980)

    ADS  Google Scholar 

  • W. Pluriel, E. Marcq, M. Turbet, Modeling the albedo of Earth-like magma ocean planets with H2O-CO2 atmospheres. Icarus 317, 583–590 (2019)

    ADS  Google Scholar 

  • F.A. Podosek, Noble gases, in Treatise on Geochemistry, vol. 1, ed. by A.M. Davis, H.D. Holland, K.K. Turekian (Elsevier, Amsterdam, 2003), pp. 381–405, 711 pp.

    Google Scholar 

  • D. Porcelli, R.O. Pepin, Rare gas constraints on early Earth history, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (University of Arizona Press, Tucson, 2000), pp. 435–458

    Google Scholar 

  • D. Porcelli, P. Cassen, W.D. Deep, Earth rare gases: initial inventories, capture from the solar nebula and losses during Moon formation. Earth Planet. Sci. Lett. 193, 237–251 (2001)

    ADS  Google Scholar 

  • D. Porcelli, C.J. Ballentine, R. Wieler, An overview of noble gas geochemistry and cosmochemistry. Rev. Mineral. Geochem. 47(1), 1–19 (2002)

    Google Scholar 

  • E.V. Quintana, T. Barclay, W.J. Borucki, J.F. Rowe, J.E. Chambers, The frequency of giant impacts on Earth-like worlds. Astrophys. J. 821, 126 (2016)

    ADS  Google Scholar 

  • A. Raquin, M. Moreira, Atmospheric 38Ar/36Ar in the mantle: Implications for the nature of the terrestrial parent bodies. Earth Planet. Sci. Lett. 287, 551–558 (2009)

    ADS  Google Scholar 

  • S.N. Raymond, E. Kokubo, A. Morbidelli, R. Morishima, K.J. Walsh, Terrestrial planet formation at home and abroad, in Protostars and Planets VI (2014), pp. 595–618

    Google Scholar 

  • K. Righter, N.L. Chabot, Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteorit. Planet. Sci. 46, 157–176 (2011)

    ADS  Google Scholar 

  • K. Righter, H. Yang, G. Costin, R.T. Downs, Oxygen fugacity in the Martian mantle controlled by carbon: New constraints from the nakhlite MIL 03346. Meteorit. Planet. Sci. 43(10), 1709–1723 (2008)

    ADS  Google Scholar 

  • A.E. Ringwood, Origin of the Earth and Moon (Springer, New York, 1979)

    Google Scholar 

  • F. Robert, D. Gautier, B. Dubrulle, The Solar System D/H ratio: observations and theories. Space Sci. Rev. 92, 201–224 (2000)

    ADS  Google Scholar 

  • V.S. Safronov, E.V. Zvjagina, Relative sizes of the largest bodies during the accumulation of planets. Icarus 10, 109–115 (1969)

    ADS  Google Scholar 

  • H. Saito, K. Kuramoto, Formation of hybrid-type proto-atmosphere on Mars accreting in the solar nebula. Mon. Not. R. Astron. Soc. 475, 1274–1287 (2018)

    ADS  Google Scholar 

  • H. Sakuraba, H. Kurokawa, H. Genda, Impact degassing and atmospheric erosion on Venus, Earth, and Mars during the late accretion. Icarus 317, 48–58 (2019)

    ADS  Google Scholar 

  • A. Salvador, H. Massol, A. Davaille, E. Marcq, P. Sarda, E. Chassefière, The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res., Planets 122, 1458–1486 (2017)

    ADS  Google Scholar 

  • S. Sasaki, K. Nakazawa, Did a primary solar-type atmosphere exist around the proto-Earth? Icarus 85, 21–42 (1989)

    ADS  Google Scholar 

  • L. Schaefer, B. Fegley, Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 186, 462–483 (2007)

    ADS  Google Scholar 

  • L. Schaefer, B. Fegley, Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208, 438–448 (2010)

    ADS  Google Scholar 

  • C.M. Schäfer, S. Riecker, T.I. Maindl, R. Speith, W. Kley, A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects. Astrophys. J. 590, A19 (2016)

    Google Scholar 

  • C.M. Schäfer, S. Scherrer, R. Buchwald, T.I. Maindl, R. Speith, W. Kley, Numerical simulations of regolith sampling processes. Planet. Space Sci. 141, 35–44 (2017)

    ADS  Google Scholar 

  • M. Scherf, H. Lammer, N.V. Erkaev, K.E. Mandt, S. Thaller, B. Marty, Nitrogen atmospheres of the icy bodies in the solar system. Space Sci. Rev. (2020, this issue)

  • M. Schiller, M. Bizzarro, V.A. Fernandes, Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 507–510 (2018)

    ADS  Google Scholar 

  • H.E. Schlichting, S. Mukhopadhyay, Atmosphere impact losses. Space Sci. Rev. 214(34), 1–31 (2018)

    Google Scholar 

  • H.E. Schlichting, R. Sari, A. Yalinewich, Atmospheric mass loss during planet formation: The importance of planetesimal impacts. Icarus 247, 81–94 (2015)

    ADS  Google Scholar 

  • J.A. Schmidt, M.S. Johnson, R. Schinke, Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects. Proc. Natl. Acad. Sci. USA 110(44), 17691–17696 (2013)

    ADS  Google Scholar 

  • M. Sekiya, K. Nakazawa, C. Hayashi, Dissipation of the rare gases contained in the primordial Earth’s atmosphere. Earth Planet. Sci. Lett. 50, 197–201 (1980a)

    ADS  Google Scholar 

  • M. Sekiya, K. Nakazawa, C. Hayashi, Dissipation of the primordial terrestrial atmosphere due to irradiation of the solar EUV. Prog. Theor. Phys. 64, 1968–1985 (1980b)

    ADS  Google Scholar 

  • V.I. Shematovich, D.E. Ionov, H. Lammer, Heating efficiency in hydrogen-dominated upper atmospheres. Astron. Astrophys. 571, A94 (2014)

    ADS  Google Scholar 

  • S.F. Sholes, M.L. Smith, M.W. Claire, K.J. Zahnle, D.C. Catling, Anoxic atmospheres on Mars driven by volcanism: Implications for past environments and life. Icarus 290, 46–62 (2017)

    ADS  Google Scholar 

  • V. Shuvalov, Atmospheric erosion induced by oblique impacts. Meteorit. Planet. Sci. 44, 1095–1105 (2009)

    ADS  Google Scholar 

  • M. Slipski, B.M. Jakosky, M. Benna, M. Elrod, P. Mahaffy, D. Kass, S. Stone, R. Yelle, Variability of Martian turbopause altitudes. J. Geophys. Res. 123, 2939–2957 (2018)

    Google Scholar 

  • P.A. Sossi, B. Fegley Jr., Thermodynamics of element volatility and its application to planetaryprocesses. Rev. Mineral. Geochem. 84, 393–459 (2018)

    Google Scholar 

  • P.A. Sossi, S. Klemme, H.St.C. O’Neill, J. Berndt, F. Moynier, Evaporation of moderately volatile elements from silicate melts: experiments and theory. Geochim. Cosmochim. Acta 260, 204–231 (2019)

    ADS  Google Scholar 

  • A. Stökl, E.A. Dorfi, C.P. Johnstone, H. Lammer, Hydrodynamic simulations of captured protoatmospheres around Earth-like planets. Astron. Astrophys. 576, 87–97 (2015)

    Google Scholar 

  • A. Stökl, E.A. Dorfi, C.P. Johnstone, H. Lammer, Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5 M in the habitable zone. Astrophys. J. 825, 86 (2016)

    ADS  Google Scholar 

  • D.F. Strobel, D.E. Shemansky, EUV emission from Titan’s upper atmosphere: Voyager 1 encounter. J. Geophys. Res. 87, 1361–1368 (1982)

    ADS  Google Scholar 

  • R.G. Strom, G.G. Schaber, D.D. Dawson, The global resurfacing of Venus. J. Geophys. Res. 99(E5), 10899–10926 (1994)

    ADS  Google Scholar 

  • I.A. Surkov, F.F. Kirnozov, V.N. Glazov, A.G. Dunchenko, L.P. Tatsii, Content of natural radioactive elements in Venusian soils from Venera 9 and 10 data. Kosm. Issled. 14, 704–709 (1976)

    ADS  Google Scholar 

  • T.D. Swindle, Martian noble gases. Rev. Mineral. Geochem. 47, 171–187 (2002)

    Google Scholar 

  • S.R. Taylor, Chondritic Earth model. Nature 202, 281–282 (1964)

    ADS  Google Scholar 

  • N. Terada, S. Machida, H. Shinagawa, Global hybrid simulation of the Kelvin-Helmholtz instability at the Venus ionopause. J. Geophys. Res. Space Phys. 107, 1471 (2002)

    ADS  Google Scholar 

  • H. Terasaki, D.C. Rubie, U. Mann, D.J. Frost, F. Langenhorst, The effects of oxygen, sulfur, and silicon on the dihedral angles between Fe-rich liquid metal and olivine, ringwoodite, and silicate perovskite: implications for planetary core formation, in Proc. Lunar Planet. Sci. Conf., 36th, League City, Tex., March 14–18, Abst. 1129 (Lunar Planet. Inst., Houston, 2005)

    Google Scholar 

  • F. Tian, O.B. Toon, A.A. Pavlov, H. de Sterck, A hydrogen-rich early Earth atmosphere. Science 13, 308(5724), 1014–1017 (2005)

    Google Scholar 

  • F. Tian, J.F. Kasting, C.S. Solomon, Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36, L02205 (2009)

    ADS  Google Scholar 

  • W.B. Tonks, H.J. Melosh, Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993)

    ADS  Google Scholar 

  • M. Trieloff, J. Kunz, D.A. Clague, D. Harrison, C.J. Allègre, The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038 (2000)

    ADS  Google Scholar 

  • L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, The extreme ultraviolet and X-ray Sun in Time: High-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015)

    ADS  Google Scholar 

  • D.L. Turcotte, G. Schubert, Geodynamics (Cambridge University Press, Cambridge, 2002), p. 456

    Google Scholar 

  • T. Usui, C.M.O.’D. Alexander, J. Wang, J.I. Simon, J.H. Jones, Origin of water and mantle–crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth Planet. Sci. Lett. 357, 119–129 (2012)

    ADS  Google Scholar 

  • T. Usui, C.M.O.’D. Alexander, J. Wang, J.I. Simon, J.H. Jones, Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth Planet. Sci. Lett. 410, 140–151 (2015)

    ADS  Google Scholar 

  • T. Usui, H. Kurokawa, J. Wang, C.M.O.’D. Alexander, J.I. Simon, J.H. Jones, Hydrogen isotopic constraints on the evolution of surface and subsurface water on Mars, in Lunar Planet. Science XLVIII (2017), p. 1278

    Google Scholar 

  • G.L. Villanueva, M.J. Mumma, R.E. Novak, H.U. Käufl, P. Hartogh, T. Encrenaz, A. Tokunaga, A. Khayat, M.D. Smith, Strong water isotopic anomalies in the Martian atmosphere: Probing current and ancient reservoirs. Science 348, 218–221 (2015)

    ADS  Google Scholar 

  • A.N. Volkov, R.E. Johnson, O.J. Tucker, J.T. Erwin, Thermally driven atmospheric escape: transition from hydrodynamic to jeans escape. Astrophys. J. 729, L24 (2011)

    ADS  Google Scholar 

  • U. von Zahn, S. Komer, H. Wieman, R. Prinn, Composition of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 297–430

    Google Scholar 

  • J. Wade, B.J. Wood, Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    ADS  Google Scholar 

  • M. Wadhwa, Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291, 1527–1530 (2001)

    ADS  Google Scholar 

  • H. Wakita, R.A. Schmitt, Lunar anorthosites: rare-Earth and other elemental abundances. Science 170, 969–974 (1970)

    ADS  Google Scholar 

  • J.C.G. Walker, Carbon dioxide on the early Earth. Orig. Life 16, 117–127 (1985)

    ADS  Google Scholar 

  • M.K. Wallis, C, N, O isotope fractionation on Mars: implications for crustal H2O and SNC meteorites. Earth Planet. Sci. Lett. 93, 321–324 (1989)

    ADS  Google Scholar 

  • H. Wang, B.P. Weiss, X.N. Bai, B.G. Downey, J. Wang, C. Suavet, R.R. Fu, M.E. Zucolotto, Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017)

    ADS  Google Scholar 

  • H. Wänke, G. Dreibus, Chemical composition and accretion history of terrestrial planets. Philos. Trans. R. Soc. A 325, 545–557 (1988)

    ADS  Google Scholar 

  • A.B. Watson, J.B. Thomas, D.J. Cherniak, 40Ar retention in the terrestrial planets. Nature 449, 299–304 (2007)

    ADS  Google Scholar 

  • B.R. Webster, P.R. Mahaffy, G.J. Flesch, P.B. Niles, J.H. Jones (the MSL Science Team), Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere. Science 341, 260–263 (2013a)

    ADS  Google Scholar 

  • C.R. Webster, P.R. Mahaffy, L.A. Leshin (the SAM Team), Mars atmospheric escape recorded by H, C and O isotope ratios in carbon dioxide and water measured by the SAM Tunable Laser Spectrometer on the Curiosity Rover (abstract), in Lunar Planet. Sci. Conf. 44th, Abstract #1365 (Lunar and Planetary Institute, Houston, 2013b)

    Google Scholar 

  • F.W. Wetherill, Formation of the terrestrial planets. Annu. Rev. Astron. Astrophys. 18, 77–113 (1980)

    ADS  Google Scholar 

  • D.C.D. Williams, S. Mukhopadhyay, Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019)

    ADS  Google Scholar 

  • M.H. Wong, S.K. Atreya, P.N. Mahaffy, H.B. Franz, C. Malespin, M.G. Trainer, J.C. Stern, P.G. Conrad, H.L.K. Manning, R.O. Pepin, R.H. Becker, C.P. McKay, T.C. Owen, R. Navarro-González, J.H. Jones, B.M. Jakosky, A. Steele, Isotopes of nitrogen on Mars: atmospheric measurements by Curiosity’s mass spectrometer. Geophys. Res. Lett. 40, 6033–6037 (2013)

    ADS  Google Scholar 

  • J.J. Wray, S.L. Murchie, J.L. Bishop, B.L. Ehlmann, R.E. Milliken, M.B. Wilhelm, K.D. Seelos, M. Chojnacki, Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res., Planets 121, 652–677 (2016)

    ADS  Google Scholar 

  • I.P. Wright, M.M. Grady, C.T. Pillinger, Chassigny and the Nakhlites: carbon-bearing components and their relationship to Martian environmental conditions. Geochim. Cosmochim. Acta 56, 817–826 (1992)

    ADS  Google Scholar 

  • R. Yokochi, B. Marty, A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004)

    ADS  Google Scholar 

  • E.D. Young, A. Shahar, F. Nimmo, H.E. Schlichting, E.A. Schauble, H. Tang, J. Labidi, Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323, 1–15 (2019)

    ADS  Google Scholar 

  • Y.L. Yung, W.B. DeMore, Photochemistry of Planetary Atmospheres (Oxford University Press, London, 1998)

    Google Scholar 

  • H. Yurimoto, K. Kuramoto, A.N. Krot, E.R.D. Scott, J.N. Cuzzi, M.H. Thiemans, J.R. Lyons, Origin and evolution of oxygen isotopic compositions of the solar system, in Protostars and Planets, ed. by V.B. Reipurth et al. (Univ. of Arizona, Tucson, 2006), pp. 849–862

    Google Scholar 

  • K.J. Zahnle, D.C. Catling, The cosmic shoreline: The evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri B. Astrophys. J. 843, 122, 23 pp. (2017)

    ADS  Google Scholar 

  • K.J. Zahnle, J.F. Kasting, Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986)

    ADS  Google Scholar 

  • K.J. Zahnle, J.B. Pollack, J.F. Kasting, Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus 84, 502–527 (1990)

    ADS  Google Scholar 

  • K.J. Zahnle, R.M. Haberle, D.C. Catling, J.F. Kasting, Photochemical instability of the ancient Martian atmosphere. J. Geophys. Res. 113, E11004 (2008)

    ADS  Google Scholar 

  • K.J. Zahnle, M. Gacesa, D.C. Catling, Strange messenger: A new history of hydrogen on Earth, as told by Xenon. Geochim. Cosmochim. Acta 244, 56–85 (2019)

    ADS  Google Scholar 

  • L. Zeng, D.D. Sasselov, S.B. Jacobsen, Mass-radius relation for rocky planets based on PREM. Astrophys. J. 819, 127–132 (2016)

    ADS  Google Scholar 

  • M.Y. Zolotov, Martian volcanic gases: are they terrestrial-like? in Lunar and Planetary Science Conference, vol. 34 (2003), abs. 1795

    Google Scholar 

Download references

Acknowledgements

We acknowledge support by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung, Nationales Forschungs Netzwerk (FWF NFN) project S116-N16 and the subprojects S11603-N16, S11604-N16, S11606-N16, S11607-N16 and S11608-N16. H. Lammer, M. Leitzinger and P. Odert acknowledge support of the FWF projects P27256-N27 and P30949-N36. M. Benedikt and H. Lammer acknowledge support from the Austrian Forschungsförderungsgesellschaft (FFG) project RASEN. L. Fossati acknowledge also the FFG project “TAPAS4CHEOPS” P853993. H. Kurokawa acknowledges support from JSPS KAKENHI Grant 17H01175, 17H06457, 18K13602, 19H01960, and 19H05072. Finally, we thank an anonymous referee for very valuable and important suggestions that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reading Terrestrial Planet Evolution in Isotopes and Element Measurements

Edited by Helmut Lammer, Bernard Marty, Aubrey L. Zerkle, Michel Blanc, Hugh O’Neill and Thorsten Kleine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lammer, H., Scherf, M., Kurokawa, H. et al. Loss and Fractionation of Noble Gas Isotopes and Moderately Volatile Elements from Planetary Embryos and Early Venus, Earth and Mars. Space Sci Rev 216, 74 (2020). https://doi.org/10.1007/s11214-020-00701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00701-x

Keywords

Navigation