Skip to main content
Log in

Development and Regeneration Performance of LaNiO3 Perovskite Oxides for Dry Reforming of Methane

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Dry reforming of methane (DRM) process has attracted much attention in recent years for the direct conversion of CH4 and CO2 into high-value-added syngas. The key for DRM was to develop catalysts with high activity and stability. In this study, LaNiO3 was prepared by the sol-gel, co-precipitation, and hydro-thermal methods to explore the influence of preparation methods on the catalyst structure and DRM reaction performance. The regeneration properties of the used LaNiO3 catalysts were also investigated under steam, CO2, and air atmospheres, respectively. The results showed that LaNiO3 prepared by sol-gel method showed the best DRM performance at 750°C. The DRM performance of the samples prepared by hydro-thermal method was inhibited at 750°C due to the residual of Na+ ions during the preparation process. The regeneration tests showed that none of the three atmospheres could restore LaNiO3 perovskite phase in the samples, but they could eliminate the carbon deposits in the samples during the DRM reaction, so the samples could maintain stable DRM performance at different cycling stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kwon O., Huang R., Cao T., Vohs J.M., Gorte R.J., Dry reforming of methane over Ni supported on LaMnO3 thin films. Catalysis Today, 2021, 382: 142–147.

    Google Scholar 

  2. Muraza O., Galadima A., A review on coke management during dry reforming of methane. International Journal of Energy Research, 2015, 39(9): 1196–1216.

    Article  Google Scholar 

  3. Bhattar S., Abedin M.A., Kanitkar S., Spivey J.J., A review on dry reforming of methane over perovskite derived catalysts. Catalysis Today, 2021, 365: 2–23.

    Article  Google Scholar 

  4. Deng M., Liu J., Zhang X., Li J., Fu L., Energy and parameter analysis of SOFC system for hydrogen production from methane steam reforming. Journal of Thermal Science, 2022, 31(6): 2088–2110.

    Article  ADS  Google Scholar 

  5. Peng W., Li Z., Liu B., Qiu P., Yan D., Jia L., Li J., Enhanced activity and stability of Ce-doped PrCrO3-supported nickel catalyst for dry reforming of methane. Separation and Purification Technology, 2022, 303: 122245.

    Article  Google Scholar 

  6. Bakhtiari K., Shahbazi Kootenaei A., Maghsoodi S., Azizi S., Tabatabaei Ghomsheh S.M., Synthesis of high sintering-resistant Ni-modified halloysite based catalysts containing La, Ce, and Co for dry reforming of methane. Ceramics International, 2022, 48(24): 37394–37402.

    Article  Google Scholar 

  7. Wei T., Jia L., Luo J.-L., Chi B., Pu J., Li J., CO2 dry reforming of CH4 with Sr and Ni co-doped LaCrO3 perovskite catalysts. Applied Surface Science, 2020, 506: 144699.

    Article  Google Scholar 

  8. Anil C., Modak J.M., Madras G., Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst. Molecular Catalysis, 2020, 484: 110805.

    Article  Google Scholar 

  9. Wen J., Xie Y., Ma Y., Sun H., Wang H., Liu M., Zhang Q., Chen J., Engineering of surface properties of Ni-CeZrAl catalysts for dry reforming of methane. Fuel, 2022, 308: 122008.

    Article  Google Scholar 

  10. Zhang M., Zhang J., Zhou Z., Chen S., Zhang T., Song F., Zhang Q., Tsubaki N., Tan Y., Han Y., Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst. Applied Catalysis B: Environmental, 2020, 264: 118522.

    Article  Google Scholar 

  11. Hambali H.U., Jalil A.A., Abdulrasheed A.A., Siang T.J., Abdullah T.A.T., Ahmad A., Vo D.V.N., Fibrous spherical Ni - M/ZSM - 5 (M: Mg, Ca, Ta, Ga) catalysts for methane dry reforming: The interplay between surface acidity - basicity and coking resistance. International Journal of Energy Research, 2020, 44(7): 5696–5712.

    Article  Google Scholar 

  12. Sun H., Zhang Q., Wen J., Tang T., Wang H., Liu M., Ning P., Deng L., Shi Y., Insight into the role of CaO in coke-resistant over Ni-HMS catalysts for CO2 reforming of methane. Applied Surface Science, 2020, 521: 146395.

    Article  Google Scholar 

  13. Liu W., Li L., Lin S., Luo Y., Bao Z., Mao Y., Li K., Wu D., Peng H., Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming. Journal of Energy Chemistry, 2022, 65: 34–47.

    Article  Google Scholar 

  14. Sun Y., Zhang G., Cheng H., Liu J., Li G., Kinetics and mechanistic studies of methane dry reforming over Ca promoted 1Co-1Ce/AC-N catalyst. International Journal of Hydrogen Energy, 2021, 46(1): 531–542.

    Article  Google Scholar 

  15. Singh S., Zubenko D., Rosen B.A., Influence of LaNiO3 shape on its solid-phase crystallization into coke-free reforming catalysts. ACS Catalysis, 2016, 6(7): 4199–4205.

    Article  Google Scholar 

  16. Bonmassar N., Bekheet M.F., Schlicker L., Gili A., Gurlo A., Doran A., Gao Y., Heggen M., Bernardi J., Klötzer B., Penner S., In situ-determined catalytically active state of LaNiO3 in methane dry reforming. ACS Catalysis, 2019, 10(2): 1102–1112.

    Article  Google Scholar 

  17. Song X., Dong X., Yin S., Wang M., Li M., Wang H., Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane. Applied Catalysis A: General, 2016, 526: 132–138.

    Article  Google Scholar 

  18. Pereniguez R., González-DelaCruz V.M., Holgado J.P., Caballero A., Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Applied Catalysis B: Environmental, 2010,–(3–4): 346–353.

    Google Scholar 

  19. Batiot-Dupeyrat C., Valderrama G., Meneses A., Martinez F., Barrault J., Tatibouët J.M., Pulse study of CO2 reforming of methane over LaNiO3. Applied Catalysis A: General, 2003, 248(1–2): 143–151.

    Article  Google Scholar 

  20. Kim W.Y., Jang J.S., Ra E.C., Kim K.Y., Kim E.H., Lee J.S., Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane. Applied Catalysis A: General, 2019, 575: 198–203.

    Article  Google Scholar 

  21. Batiot-Dupeyrat C., Gallego G.A.S., Mondragon F., Barrault J., Tatibouët J.-M., CO2 reforming of methane over LaNiO3 as precursor material. Catalysis Today, 2005, 107–108: 474–480.

    Article  Google Scholar 

  22. Gallego G.S., Mondragón F., Barrault J., Tatibouët J.-M., Batiot-Dupeyrat C., CO2 reforming of CH4 over La-Ni based perovskite precursors. Applied Catalysis A: General, 2006, 311: 164–171.

    Article  Google Scholar 

  23. Li Y., Wang Y., Zhang X., Ding X., Liu Z., Zhu R., Wu L., Zheng L., Ni supported on natural clay of palygorskite as catalyst for dry reforming of methane: Thermodynamic analysis and impacts of preparation methods. International Journal of Hydrogen Energy, 2022, 47(48): 20851–20866.

    Article  Google Scholar 

  24. Ahmad Y.H., Mohamed A.T., El-Sayed H.A., Kumar A., Al-Qaradawi S.Y., Design of Ni/La2O3 catalysts for dry reforming of methane: Understanding the impact of synthesis methods. International Journal of Hydrogen Energy, 2022, 47(97): 41294–41309.

    Article  Google Scholar 

  25. Wu J.C.S., Chou H.-C., Bimetallic Rh-Ni/BN catalyst for methane reforming with CO2. Chemical Engineering Journal, 2009, 148(2–3): 539–545.

    Article  Google Scholar 

  26. Rego de Vasconcelos B., Pham Minh D., Sharrock P., Nzihou A., Regeneration study of Ni/hydroxyapatite spent catalyst from dry reforming. Catalysis Today, 2018, 310: 107–115.

    Article  Google Scholar 

  27. Chong C.C., Cheng Y.W., Setiabudi H.D., Ainirazali N., Vo D.-V.N., Abdullah B., Dry reforming of methane over Ni/dendritic fibrous SBA-15 (Ni/DFSBA-15): Optimization, mechanism, and regeneration studies. International Journal of Hydrogen Energy, 2020, 45(15): 8507–8525.

    Article  Google Scholar 

  28. Cousin P., Ross R.A., Preparation of mixed oxides: A review. Materials Science and Engineering: A, 1990, 130(1): 119–125.

    Article  Google Scholar 

  29. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (iupac technical report). Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069.

    Article  Google Scholar 

  30. Shahnazi A., Firoozi S., Improving the catalytic performance of LaNiO3 perovskite by manganese substitution via ultrasonic spray pyrolysis for dry reforming of methane. Journal of CO2 Utilization, 2021, 45: 101455.

    Article  Google Scholar 

  31. Lovell E., Jiang Y., Scott J., Wang F., Suhardja Y., Chen M., Huang J., Amal R., CO2 reforming of methane over MCM-41-supported nickel catalysts: Altering support acidity by one-pot synthesis at room temperature. Applied Catalysis A: General, 2014, 473: 51–58.

    Article  Google Scholar 

  32. Németh M., Srankó D., Károlyi J., Somodi F., Schay Z., Sáfrán G., Sajó I., Horváth A., Na-promoted Ni/ZrO2 dry reforming catalyst with high efficiency: Details of Na2O-ZrO2-Ni interaction controlling activity and coke formation. Catalysis Science & Technology, 2017, 7(22): 5386–5401.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the funding from the National Natural Science Foundation of China (52176109), and Analytical and Testing Center of HUST for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Luo.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Luo, C., Cai, G. et al. Development and Regeneration Performance of LaNiO3 Perovskite Oxides for Dry Reforming of Methane. J. Therm. Sci. 32, 1935–1944 (2023). https://doi.org/10.1007/s11630-023-1849-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1849-0

Keywords

Navigation