Skip to main content

Advertisement

Log in

CO2 Reforming of Methane over Ni0/La2O3 Catalyst Without Reduction Step: Effect of Calcination Atmosphere

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

La-Ni precursor prepared by EDTA-cellulose method was calcined under different atmosphere (Air or Ar), and the catalysts were characterized by various techniques. In this study, the possibility of reduction free catalyst for dry reforming of methane was investigated as well. It was observed that LaNiO3 perovskite structure was formed under the calcination of Air atmosphere, while Ni0/La2O3-C structure was obtained under the calcination of Ar atmosphere due to the reducing and the oxidizing agents generated by the decomposition of organic species under inert atmosphere. It was found that even if LaNiO3-Ar had much larger size of nickel particle than LaNiO3-Air, the remained carbon species derived positive effect: the interfacial area among carbon, La2O3 and Ni0 could lead to synergetic sites such as basic sites, which enhanced resistance to carbon deposition. Furthermore, the higher CH4 activation energy and basicity of LaNiO3-Ar catalyst might ascribe to equilibrium between CH4 decomposition and CO2 gasification rates. Thus, it is suggested that remained carbon species in Ar calcined catalyst did not negatively affect the catalytic activity, but it affected stability positively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ross JRH (2005) Natural gas reforming and CO2 mitigation. Catal Today 100:151–158

    Article  CAS  Google Scholar 

  2. Usman M, Wan DWMA, Abbas HF (2015) Dry reforming of methane: Influence of process parameters-A review. Renew Sust Energy Rev 45:710–744

    Article  CAS  Google Scholar 

  3. Lee HC, Siew KW, Khan MR, Chin SY, Gimbun J, Cheng CK (2014) Catalytic performance of cement clinker supported nickel catalyst in glycerol dry reforming. J Energy Chem 23:645–656

    Article  Google Scholar 

  4. Gallego GS, Marín JG, Batiot-Dupeyrat C, Barrault J, Mondragón F (2009) Influence of Pr and Ce in dry methane reforming catalysts produced from La1–xAxNiO3–δ perovskites. Appl Catal A Gen 369:97–103

    Article  CAS  Google Scholar 

  5. Wang N, Yu X, Wang Y, Chu W, Liu M (2013) A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal Today 212:98–107

    Article  CAS  Google Scholar 

  6. Zhu Q, Cheng H, Zou X, Lu X, Xu Q, Zhou Z (2015) Synthesis, characterization, and catalytic performance of La0.6Sr0.4NixCo1–xO3 perovskite catalysts in dry reforming of coke oven gas. Chin J Catal 36:915–924

    Article  CAS  Google Scholar 

  7. Touahra F, Rabahi A, Chebout R, Boudjemaa A, Lerari D, Sehailia M, Halliche D, Bachari K (2016) Enhanced catalytic behaviour of surface dispersed nickel on LaCuO3 perovskite in the production of syngas: an expedient approach to carbon resistance during CO2 reforming of methane. Int J Hydrog Energy 41:2477–2486

    Article  CAS  Google Scholar 

  8. Zheng XG, Tan SY, Dong LC, Li SB, Chen HM, Wei SA (2015) Experimental and kinetic investigation of the plasma catalytic dry reforming of methane over perovskite LaNiO3 nanoparticles. Fuel Process Technol 137:250–258

    Article  CAS  Google Scholar 

  9. Yang EH, Noh YS, Ramesh S, Lim SS, Moon DJ (2015) The effect of promoters in La0.9M0.1Ni0.5Fe0.5O3 (M = Sr, Ca) perovskite catalysts on dry reforming of methane. Fuel Process Technol 134:404–413

    Article  CAS  Google Scholar 

  10. Moradi GR, Rahmanzadeh M, Khosravian F (2014) The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming. J CO2 Util 6:7–11

    Article  CAS  Google Scholar 

  11. Tanaka H, Misono M (2001) Advances in designing perovskite catalysts. Curr Opin Soild Solid State Mater 5:381–387.

    Article  CAS  Google Scholar 

  12. Jiang Y, Yang S, Hua Z, Huang H (2009) Sol-gel autocombustion synthesis of metals and metal alloys. Angew Chem Int Ed 48:8529–8531

    Article  CAS  Google Scholar 

  13. Shi L, Tao K, Yang R, Meng F, Xing C, Tsubaki N (2011) Study on the preparation of Cu/ZnO catalyst by sol-gel auto-combustion method and its application for low-temperature methanol synthesis. Appl Catal A Gen 401:46–55

    Article  CAS  Google Scholar 

  14. Shi L, Yang RQ, Tao K, Yoneyama Y, Tan YS, Tsubaki N (2012) Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: as-burnt Cu-ZnO/SiO2 catalyst for low-temperature methanol synthesis. Catal Today 185:54–60

    Article  CAS  Google Scholar 

  15. Shi L, Tao K, Kawabata T, Jun ZX, Shimamura T (2011) Impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Co/SiO2 catalysts for fischer–tropsch synthesis. ASC Catal 1:1225–1233

    CAS  Google Scholar 

  16. Yang EH, Kim NY, Noh YS, Lim SS, Jung JS, Lee JS, Hong GH, Moon DJ (2015) Steam CO2 reforming of methane over La1–xCexNiO3 perovskite catalysts. Int J Hydrogen Energy 40:11831–11839

    Article  CAS  Google Scholar 

  17. Valderrama G, Goldwasser MR, De Navarro CU, Tatibouët JM, Barrault J, Batiot-Dupeyrat C, Martínez F (2005) Dry reforming of methane over Ni perovskite type oxides. Catal Today 107–108:785–791

    Article  Google Scholar 

  18. Lima SM, Assaf JM, Peña MA, Fierro JLG (2006) Structural features of La1–xCexNiO3 mixed oxides and performance for the dry reforming of methane. Appl Catal A Gen 311:94–104

    Article  CAS  Google Scholar 

  19. Kuras M, Roucou R, Petit C (2007) Studies of LaNiO3 used as a precursor for catalytic carbon nanotubes growth. J Mol Catal A Chem 265:209–217

    Article  CAS  Google Scholar 

  20. Valderrama G, Kiennemann A, Goldwasser MR (2008) Dry reforming of CH4 over solid solutions of LaNi1–xCoxO3. Catal Today 133–135:142–148

    Article  Google Scholar 

  21. Muradov N, Smith F, T-Raissi A (2005) Catalytic activity of carbons for methane decomposition reaction. Catal Today 102–103:225–233

    Article  Google Scholar 

  22. Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S (2012) CO2 dry-reforming of methane over La0.8Sr 0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C-H activation and carbon suppression. Int J Hydrog Energy 37:11195–11207

    Article  CAS  Google Scholar 

  23. Xu X, Jiang E, Wang M, Xu Y (2015) Dry and steam reforming of biomass pyrolysis gas for rich hydrogen gas. Biomass Bioenergy 78:6–16

    Article  CAS  Google Scholar 

  24. De Llobet S, Pinilla JL, Lazaro MJ, Moliner R, Suelves I (2013) CH4 and CO2 partial pressures influence and deactivation study on the catalytic decomposition of biogas over a Ni catalyst. Fuel 111:778–783

    Article  Google Scholar 

  25. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60

    Article  CAS  Google Scholar 

  26. Singha RK, Yadav A, Agrawal A, Shukla A, Adak S, Sasaki T, Bal R (2016) Synthesis of highly coke resistant Ni nanoparticles supported MgO/ZnO catalyst for reforming of methane with carbon dioxide. Appl Catal B 191:165–178

    Article  CAS  Google Scholar 

  27. Barros BS, Melo DMA, Libs S, Kiennemann A (2010) CO2 reforming of methane over La2NiO4/α-Al2O3 prepared by microwave assisted self-combustion method. Appl Catal A Gen 378:69–75

    Article  CAS  Google Scholar 

  28. Wang H, Zhu Y, Liu P, Yao W (2003) Preparation of nanosized perovskite LaNiO3 powder via amorphous heteronuclear complex precursor. J Mater Sci 38:1939–1943

    Article  CAS  Google Scholar 

  29. Shaijumon MM, Bejoy N, Ramaprabhu S (2005) Catalytic growth of carbon nanotubes over Ni/Cr hydrotalcite-type anionic clay and their hydrogen storage properties. Appl Surf Sci 242:192–198

    Article  CAS  Google Scholar 

  30. Jiang Z, Liao X, Zhao Y (2013) Comparative study of the dry reforming of methane on fluidised aerogel and xerogel Ni/Al2O3 catalysts. Appl Petrochem Res 3:91–99

    Article  CAS  Google Scholar 

  31. Rostrup-Nielsen J, Bak Hansen J-H (1993) CO2-reforming of methane over transition metals. J Catal 144:38–49

    Article  CAS  Google Scholar 

  32. Kim J-H, Suh DJ, Park T-J, Kim K-L (2000) Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts. Appl Catal A Gen 197:191–200

    Article  CAS  Google Scholar 

  33. Bitter JH, Seshan K, Lercher JA (2000) On the contribution of X-ray absorption spectroscopy to explore structure and activity relations of Pt / ZrO2 catalysts for CO2/CH4 reforming. Top Catal 10:295–305

    Article  CAS  Google Scholar 

  34. Bitter JH, Seshan K, Lercher JA (1998) Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. J Catal 176:93–101

    Article  CAS  Google Scholar 

  35. Guo J, Lou H, Mo L, Zheng X (2009) The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions. J Mol Catal A Chem 316:1–7

    Article  Google Scholar 

  36. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB (2008) Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process. Appl Catal A Gen 340:183–190

    Article  CAS  Google Scholar 

  37. Li X, Wu M, Lai Z, He F (2005) Studies on nickel-based catalysts for carbon dioxide reforming of methane. Appl Catal A Gen 290:81–86

    Article  CAS  Google Scholar 

  38. Fu Q-S, Xue Y-Q, Cui Z-X, Wang M-F (2014) J Nanomater 2014:1–8

    Google Scholar 

  39. Zhou L, Rai A, Piekiel N, Ma XF, Zachariah MR (2008) Study on the Size-Dependent Oxidation Reaction Kinetics of Nanosized Zinc Sulfide. AIChE Annual Meeting-Nano Energetic materials session

  40. Da Silva ALM, Den Breejen JP, Mattos LV, Bitter JH, De Jong KP, Noronha FB (2014) Cobalt particle size effects on catalytic performance for ethanol steam reforming—smaller is better. J Catal 318:67–74

    Article  CAS  Google Scholar 

  41. Bhavani AG, Kim WY, Lee JW, Lee JS (2015) Influence of metal particle size on oxidative CO2 reforming of methane over supported nickel catalysts: effects of second-metal addition. ChemCatChem 7:1445–1452

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by Korea Institute of Science and Technology (Project No. 2E26570) and supported and funded by Ministry of Trade, Industry and Energy Republic of Korea (Project No. 20142010102790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ju Moon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1102 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Eh., Moon, D.J. CO2 Reforming of Methane over Ni0/La2O3 Catalyst Without Reduction Step: Effect of Calcination Atmosphere. Top Catal 60, 697–705 (2017). https://doi.org/10.1007/s11244-017-0779-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0779-z

Keywords

Navigation