Skip to main content

Conversion of Methane Over LaNiZnO3 Perovskite Catalysts

  • Chapter
  • First Online:
Materials Research and Applications

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 539 Accesses

Abstract

Carbon dioxide reforming of methane reaction (DRM) is an important process to produce synthesis gas at low H2/CO ratio and to consume the two main greenhouse gases CH4 and CO2. Nickel-based catalysts are the most frequently used in dry reforming of methane. However, deactivation of these catalysts is a major problem due to carbon deposition and metal sintering. In order to minimize the deactivation phenomena of the nickel-based catalysts, a great attention is given to the use of the perovskite oxide (ABO3) catalysts. These oxides have a defined structure that yields small metallic particles highly active and quite stable during DRM reaction. This work deals dry reforming of methane to produce synthesis gas (H2/CO), using the mixed oxides LaNi1-xZnxO3 (x = 0, 0.2, 0.8 and 1) perovskite-type catalysts. The auto-combustion using glycine as ignition promoter was the method for the synthesis of these catalysts, and then, they were characterized by using XRD, FTIR, and N2 physisorption. XRD analysis of the solids LaNi1-xZnxO3 (x = 0, 0.2, 0.8) shows the formation of perovskite structure at 2θ between 32° and 33°. At high Zn content (x = 1), the catalyst showed the presence of individual metal oxides ZnO and La2O3. These oxides are confirmed by FTIR characterization with observation of bands in the range 450–700 cm−1which are attributed to M–O-M of the perovskite structure and M–O of the simple oxide. The effect of partial substitution of Ni by Zn on the catalytic performance has been studied. LaNi0.8Zn0.2O3 was the most active toward the CH4 and CO2 conversions and was selective for synthesis gas products at 750 °C. This activity was attributed to high dispersion of the small metallic nickel particles (19 nm) and the high surface area (27 m2/g).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batiot-Dupeyrat C, Sierra GA, Mondragon F, Barrault J, Tatibouet JM (2005) CO2 reforming of methane over LaNiO3 as precursor material. Catal Today 107:474–480

    Article  Google Scholar 

  • Enger BC, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A: Gen 346:1–27

    Article  CAS  Google Scholar 

  • Fernandes JDG, Melo DMA, Zinner LB, Salustiano CM, Silva ZR, Martinelli AE, Cerqueira M, AlvesJúnior C, Longo E, Bernardi MIB (2002) Low-temperature synthesis of single-phase crystalline LaNiO3 perovskite via Pechini method. Mater Lett 53:122–125

    Article  CAS  Google Scholar 

  • Firdous A, Quasim I, Ahmad MM, Kotru PN (2009) Studies on gel-grown pure and strontium-modified lanthanum tartrate crystals. J Cryst Growth 311:3855–3862

    Article  CAS  Google Scholar 

  • Gallego GS, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragon F (2008) Dry reforming of methane over LaNi1−yByO3±δ (B=Mg, Co) perovskites used as catalyst precursor. Appl Catal A: Gen 334:251–258

    Article  CAS  Google Scholar 

  • Gallego J, Batiot-Dupeyrat C, Barrault J, Mondragón F (2009) severe deactivation of a LaNiO3 perovskite-type catalyst precursor with H2S during methane dry reforming. Energy Fuels 23:4883–4886

    Article  CAS  Google Scholar 

  • Goldwasser MR, Rivas ME, Pietri E, Pérez-Zurita MJ, Cubeiro ML, Grivobal-Constant A, Leclercq G (2005) Perovskites as catalysts precursors: synthesis and characterization. J Mol Catal A: Chem 228:325–331

    Article  CAS  Google Scholar 

  • Goula G, Kiousis V, Nalbandian L, Yentekakis IV (2006) Catalytic and electrocatalytic behavior of Ni-based cermet anodes under internal dry reforming of CH4+ CO2 mixtures in SOFCs. Solid State Ionics 177:2119–2123

    Article  CAS  Google Scholar 

  • Kapokova L, Pavlova S, Bunina R, Alikina G, Krieger T, Ishchenko A, Rogov V, Sadykov V (2011) Dry reforming of methane over LnFe0.7Ni0.3O3−δperovskites: Influence of Ln nature. Catal Today 164:227–233

    Article  CAS  Google Scholar 

  • Liu BS, Au CT (2003) Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas. Appl Catal A Gen 244:181–195

    Article  CAS  Google Scholar 

  • Liu D, Cheo WNE, Lim YWY, Borgna A, Lau R, Yang Y (2010) A comparative study on catalyst deactivation of nickel and cobalt incorporated MCM-41 catalysts modified by platinum in methane reforming with carbon dioxide. Catal Today 154:229–236

    Article  CAS  Google Scholar 

  • Moradi GR, Rahmanzadeh M, Khosravian F (2014) The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming. J CO2 Utilization 6: 7–11

    Google Scholar 

  • Nakamato K (1986) Infrared and raman spectra of inorganic and coordination compound, 4th edn. Wiley, New York, USA

    Google Scholar 

  • Provendier H, Petit C, Estournes C, Libs S, Kiennemann A (1999) Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition. Appl Catal A: Gen 180:163–173

    Article  CAS  Google Scholar 

  • Rabelo-Neto RC, Sales HBE, Inocêncio CVM, Varga E, Oszko A, Erdohelyi A, Noronha FB, Mattos LV (2018) CO2 reforming of methane over supported LaNiO3 perovskite-type oxides. Appl Catal B: Environ 221:349–361

    Article  CAS  Google Scholar 

  • Raudaskoski R, Turpeinen E, Lenkkeri R, Pongrácz E, Keiski RL (2009) Catalytic activation of CO2: Use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts. Catal Today 144:318–323

    Article  CAS  Google Scholar 

  • Sagar TV, Sreelatha N, Hanmant G, Surendar M, Lingaiah N, Rama Rao KR, Satyanarayana CVV, Reddy IAK, Sai Prasad PS (2014) Influence of method of preparation on the activity of La–Ni–Ce mixed oxide catalysts for dry reforming of methane. RSC Adv 4:50226–50232

    Article  CAS  Google Scholar 

  • Solymosi F, Kutsán G, Erdöhelyi A (1991) Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals. Catal Lett 11:149–156

    Article  CAS  Google Scholar 

  • Song X, Dong X, Yin S, Wang M, Li M, Wang H (2016) Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane. Appl Catal A: Gen 526:132–138

    Article  CAS  Google Scholar 

  • Su YJ, Pan KL, Chang MB (2014) Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane. Int J Hydrogen Energy 39:4917–4925

    Article  CAS  Google Scholar 

  • Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels 22:814–839

    Article  CAS  Google Scholar 

  • Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S (2012) CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3perovskite (M=Bi Co, Cr, Cu, Fe): Roles of lattice oxygen on C–H activation and carbon suppression. Int J Hydrogen Energy 37:11195–11207

    Article  CAS  Google Scholar 

  • Valderrama G, Goldwasser MR, de Navarro CU, Tatibouët JM, Barrault J, Batiot-Dupeyrat C, Martínez F (2005) Dry reforming of methane over Ni perovskite type oxides. Catal Today 107:785–791

    Article  Google Scholar 

  • Valderrama G, Kiennemann A, Goldwasser MR (2008) Dry reforming of CH4 over solid solutions of LaNi1–xCoxO3. Catal Today 133:142–148

    Article  Google Scholar 

  • Valderrama G, Kiennemann A, Goldwasser MR (2010) La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. J Power Sour 195:1765–1771

    Article  CAS  Google Scholar 

  • Zhang Z, Verykios XE (1996) Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts. Catal Lett 38:175–179

    Article  CAS  Google Scholar 

  • Zhang J, Wang H, Dalai AK (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249:300–310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamila Sellam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sellam, D., Ikkour, K., Dekkar, S., Halouane, M. (2021). Conversion of Methane Over LaNiZnO3 Perovskite Catalysts. In: Trache, D., Benaliouche, F., Mekki, A. (eds) Materials Research and Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9223-2_14

Download citation

Publish with us

Policies and ethics