Skip to main content
Log in

A plant regeneration protocol from callus cultures of medicinal plant Rhodomyrtus tomentosa

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Rhodomyrtus tomentosa (Ait.) Hask is a multifunctional shrub of the Myrtaceae, which uniquely combines ornamental, medicinal, and health purposes. In this study, for the first time, a regeneration system was established in R. tomentosa. Callus was induced on Murashige and Skoog (MS) medium with 0.5 mg L−1 6-benzyladenine (BA), 0.05 mg L−1 α-naphthaleneacetic acid (NAA), and 0.005 mg L−1 thidiazuron (TDZ), from tender leaves and stems. Light yellow-green, rigidity, granule callus was induced, 93.33% of which could differentiate into adventitious shoots within 60 d. The optimal shoot proliferation medium was 1/2 MS medium with 6-BA 1 mg L−1 and NAA 0.1 mg L−1, and cultured in high temperature high light intensity (26 °C, 120 µmol m−2s−1) got the highest rate (86.67%) for regeneration response within 60 days. Adventitious roots exhibited the highest rate at 100% on PGR-free 1/2 MS medium. Within 2 months, over 90% of plantlets survived when transferred to a substrate of sand/soil (1:2 ratio).

Key message

This study provides an efficient protocol to regenerate the multifunctional shrub rose myrtle (Rhodomyrtus tomentosa) from embryogenic calli induced from tender leaves and stems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

NAA:

Naphtha acetic acid

6-BA:

6-Benzyladenim

TDZ:

Thidiazuron

PGRs:

Plant growth regulators

IBA:

3-Indolebutyric acid

ANOVA:

Analysis of variance

MS medium:

Murashige and Skoog (1962) medium

GA3 :

Gibberellic acid

References

  • Anzidei M, Bennici A, Schiff S, Tani C, Mori B (2004) Organogenesis and somatic embryogenesis in Foeniculum vulgare: histological observations of developing embryogenic callus. Plant Cell Tissue Organ Cult 61:69–79

    Article  Google Scholar 

  • Azmi A, Noin M, Landré P, Prouteau M, Boudet AM, Chriqui D (1997) High frequency plant regeneration from Eucalyptus globulus Labill. Hypocotyls: ontogenesis and ploidy level of the regenerants. Plant Cell Tissue Organ Cult 51:9–16

    Article  Google Scholar 

  • Biffin E, Lucas E, Craven LA, Costa IRd, Harrington M, Crisp M (2010) Evolution of exceptional species richness among lineages of fleshy-fruited myrtaceae. Ann Bot 106:79–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng SL, Yang L, Qiu XS, Li S (2022) Treatment method for improving tissue culture germination of myrtle seeds and reducing pollution rate.China, CN111557138B, 2022-02-15. https://patents.google.com/patent/CN111557138B/en?oq=CN111557138B

  • Dewir YH, Nurmansyah, Naidoo Y, Silva JA (2018) Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep 37:1451–1470

    Article  CAS  PubMed  Google Scholar 

  • Fett-Neto AG, Fett JP, Vieira G, Giancarlo P, Termignoni RR, Ferreira AG (2001) Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol 21:457–464

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Külheim C, Potts BM, Myburg AA (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508

    Article  Google Scholar 

  • Guan YL, Huang M, Wang M (2004) In vitro culture and plantlet regeneration from leaves of Eucalyptus urophylia. Plant Physiol Commun 5:591–592. https://doi.org/10.1300/J079v30n03_01

    Article  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Huế T, Abdullah TL, Sinniah UR, Abdullah NA (2013) Seed traits and germination behaviour of kemunting (Rhodomyrtus tomentosa) populations as affected by different temperatures. Seed Sci Technol 41:199–213

    Article  Google Scholar 

  • Ikeuchi M, Iwase SA (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur N, Dhawan M, Sharma I, Pati PK (2016) Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC Plant Biol 16:1–13

    Article  Google Scholar 

  • Kaur K, Dolker D, Behera S, Pati PK (2022) Critical factors influencing in vitro propagation and modulation of important secondary metabolites in Withania somnifera (l.) dunal. Plant Cell Tissue Organ Cult 149:41–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang HL, Liu HN, Yang QH, Huang RZ, Wei X (2013) Seed germination of Rhodomyrtus tomentosa. Seed Sci Technol 41:188–198

    Article  Google Scholar 

  • Luo Q, Zhang Y, Ou J (2021) Callus induction and plant regeneration of Cerasus serrulata var.lannesiana cv.‘Grandiflora’. Chin Bull Bot 56:451–461. https://doi.org/10.11983/CBB20205

    Article  CAS  Google Scholar 

  • Mela R, Aswaldi A, Swasti E (2020) Karamunting (Rhodomyrtus tomentosa) callus induction in vitro. Int J Environ Agric Biotechnol 5:459–465. https://doi.org/10.22161/ijeab.52.20

    Article  Google Scholar 

  • Mordmuang A, Voravuthikunchai SP (2015) Rhodomyrtus tomentosa (Aiton) Hassk. Leaf extract: an alternative approach for the treatment of staphylococcal bovine mastitis. Res Vet Sci 102:242–246

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nugent G, Chandler S, Whiteman P, Stevenson T (2001) Somatic embryogenesis in Eucalyptus globulus. Plant Cell Tissue Organ Cult 67:85–88

    Article  CAS  Google Scholar 

  • Pinto G, Santos C, Neves L, Araújo C (2002) Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep 21:208–213

    Article  CAS  Google Scholar 

  • Šavikin-Fodulović K, Bulatović VM, Menković NR, Grubišić D (2000) Comparison between the essential oil of Myrtus communis L. obtained from naturally grown and in vitro plants. J Essent Oil Res 12:75–78

    Article  Google Scholar 

  • Srisuwan S, Voravuthikunchai SP (2017) Rhodomyrtus tomentosa leaf extract inhibits methicillin-resistant staphylococcus aureus adhesion, invasion, and intracellular survival in human HaCaT keratinocytes. Microb Drug Resis 23:1002–1012

    Article  CAS  Google Scholar 

  • Vo TS, Ngo DH (2019) The health beneficial properties of Rhodomyrtus tomentosa as potential functional food. Biomol 9:76–92

    CAS  Google Scholar 

  • Yucesan B, Turker AU, Gurel E (2007) TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory (Cichorium intybus L.). Plant Cell Tissue Organ Cult 91:243–250

    Article  CAS  Google Scholar 

  • Zhao LY, Liu HX, Wang L, Xu ZF, Tan HB, Qiu SX (2018) Rhodomyrtosone B, a membrane-targeting anti-MRSA natural acylgphloroglucinol from Rhodomyrtus tomentosa. J Ethnopharmacol 228:50–57

    Article  PubMed  Google Scholar 

  • Zhao Z, Wu L, Xie J, Feng Y, Tian J, He X, Li B, Wang L, Wang X, Zhang Y, Wu S, Zheng X (2020) Rhodomyrtus tomentosa (Aiton.): a review of phytochemistry, pharmacology and industrial applications research progress. Food Chem 309:125715–125749

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Guangzhou Innovation Leading Team Project (No. 202009020004), “One Center and Three Bases” Project for Flora and Fauna Conservation of Guangdong Province and Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0408).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of research: SD and SQ; Designing of the experiments: SD, LY and KW; Contribution of experimental materials: HC and SQ; Execution of field/lab experiments and data collection: LY and KW; Analysis of data and interpretation SD, LY, and KW; Preparation of manuscript: LY and SD.

Corresponding author

Correspondence to Shulin Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Klaus Eimert.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wu, K., Qiu, S. et al. A plant regeneration protocol from callus cultures of medicinal plant Rhodomyrtus tomentosa. Plant Cell Tiss Organ Cult 153, 307–317 (2023). https://doi.org/10.1007/s11240-023-02464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02464-z

Keywords

Navigation