Skip to main content
Log in

Contribution of the Zea mays insulin-like growth factor (ZmIGF) to the embryogenic competence of maize tissue cultures

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Establishment of somatic embryogenic cultures is highly influenced by the plant genotype and the explant type. In maize, immature embryos generate embryogenic callus (E), whereas quiescent embryos produce non-embryogenic callus (NE). E callus shows active growth and high capacity of plant regeneration, while NE callus shows slow growth and no regeneration capacity. Active growth is needed for the establishment of embryogenic cultures; therefore, lack of this characteristic pose a handicap for plant regeneration from NE callus. To correct the slow growth on NE callus, the Zea mays insulin-like growth factor (ZmIGF), a peptide that promotes growth by activating the target of rapamycin (TOR) pathway, was used as media supplement. Additionally, since the TOR pathway is connected to the auxin pathway, ZmIGF participation in cell differentiation was considered. To this end, this research explores ZmIGF effect, beyond growth and proliferation on a Mexican maize landrace, which has shown high somatic embryogenic capacity. Expression levels of reported genes involved in the embryogenesis and differentiation processes were evaluated in maize E, NE, and NE-ZmIGF (NE-Zm) growth-activated calluses. A tendency to upregulate messenger RNA (mRNA) expression was observed for genes encoding transcription factors and auxin transport. Some genes related to epigenetic control showed downregulation. Global DNA methylation and chromatin modifications results suggest an epigenetic activation state on E callus and a repression status on NE callus. ZmIGF induced modifications at DNA methylation and chromatin over NE callus, which changed its original repression state to an active one. Overall, results suggest that the expression of genes related to auxin signaling, mainly transport and efflux carriers, are essential for accomplishing plant regeneration through somatic embryogenesis (SE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6

Similar content being viewed by others

References

  • Beltrán-Peña E, Aguilar R, Ortíz-López A, Dinkova TD, Jiménez ES (2002) Auxin stimulates S6 ribosomal protein phosphorylation in maize thereby affecting protein synthesis regulation. Physiol Plant 115:291–297

    Article  PubMed  Google Scholar 

  • Branco MR, Masaaki O, Wolf R (2008) Safeguarding parental identity: Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis. Genes Dev 22(12):1567–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun N, Wyrzykowska J, Muller P, David K, Couch D, Perrot-Rechenmann C, Fleming AJ (2008) Conditional repression of AUXINBINDING PROTEIN1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell 20:2746–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Costa LM, Biderre-Petit C, Kbhaya B, Dey N, Perez P, McCarty RD, Gutierrez-Marcos FJ, Becraft WP (2007) Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiol 143:720–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chávez-Hernández EC, Alejandri-Ramírez ND, Juárez-González VT, Dinkova TD (2015) Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis. Front Plant Sci 6:555. doi:10.3389/fpls.2015.00555

    Article  PubMed  PubMed Central  Google Scholar 

  • Che P, Love TM, Framem BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize hi II callus cultures. Plant Mol Biol 62:1–14

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Lausser A, Dresselhaus T (2014) Hormonal responses during early embryogenesis in maize. Biochem Soc Trans 42(2):325–331. doi:10.1042/BST20130260

    Article  PubMed  Google Scholar 

  • De la Peña C, Galaz-Ávalos RM, Loyola-Vargas VM (2008) Possible role of light and polyamines in the onset of somatic embryogenesis of Coffea canephora. Mol Biotechnol 39:215–222

    Article  PubMed  Google Scholar 

  • Deng K, Yu L, Zheng X, Zhang K, Wang W, Dong P, Zhang J, Ren M (2016) Target of rapamycin is a key player for auxin signaling transduction in Arabidopsis. Front Plant Sci 7:291. doi:10.3389/fpls.2016.00291

    PubMed  PubMed Central  Google Scholar 

  • Dickinson WC (2000) Plant growth, development and cellular organization. Integrative plant anatomy. Academic Press, London

    Google Scholar 

  • Dinkova TD, Reyes de la Cruz H, García-Flores C, Aguilar R, Jiménez-García LF, Sánchez de Jiménez E (2007) Dissecting the TOR-S6K signal transduction pathway in maize seedlings: relevance on cell growth regulation. Physiol Plant 130:1–10

    Article  CAS  Google Scholar 

  • Dong P, Xiong F, Que Y, Wang K, Yu L, Li Z, Ren M (2015) Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Front Plant Sci 6:677. doi:10.3389/fpls.2015.00677

    PubMed  PubMed Central  Google Scholar 

  • Feng Y-Q, Desprat R, Fu H, Olivier E, Lin CM, Lobell A, Gowda SN, Aladjem MI, Bouhasira EE (2006) DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLoS Genet 2:0461–0470

    Article  CAS  Google Scholar 

  • Forestan C, Meda S, Varotto S (2009) ZmPIN1 mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol 152:1373–1390

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrocho-Villegas V, Aguilar CR, Sánchez de Jimenez E (2013) Insights into the TOR-S6k signaling pathway in maize (Zea mays L.). Pathway activation by effector−receptor interaction. Biochemistry 52:9129–9140. doi:10.1021/bi401474x

    Article  CAS  PubMed  Google Scholar 

  • Garrocho-Villegas V, Jesus-Olivera MT, Sánchez QE (2012) Maize somatic embryogenesis: recent features to improve plant regeneration. Methods Mol Biol 877:173–182

    Article  CAS  PubMed  Google Scholar 

  • Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing (WOX) protein family. Gen Biol 10:248. doi:10.1186/gb-2009-10-12-248

    Article  Google Scholar 

  • Guleria P, Yadav SK (2011) Identification of miR414 and expression analysis of conserved miRNAs from Stevia rebaudiana. Genomics Proteomics Bioinformatics 9(6):211–217. doi:10.1016/S1672-0229(11)60024-7

    Article  CAS  PubMed  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriques R, Bögre L, Horváth B, Magyar Z (2014) Balancing act: matching growth with environment by the TOR signalling pathway. J Exp Bot 65(10):2691–2701

    Article  CAS  PubMed  Google Scholar 

  • Huang XL, Li XJ, Li Y, Huag LZ (2001) The effect of AOA on ethylene and polyamine metabolism during early phases of somatic embryogenesis in Medicago sativa. Physiol Plant 113:424–429

    Article  CAS  PubMed  Google Scholar 

  • Inzé D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105

    Article  PubMed  Google Scholar 

  • Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T (2005) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406

    Article  CAS  PubMed  Google Scholar 

  • Karlova R, Boeren S, Russinova E, Aker J, Vervoort J, de Vries S (2006) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE1 W. Plant Cell 18:626–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laux T, Würschum T, Breuninger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell 16:S190–S202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JM, Williams ME, Tingey SV, Rafalski JA (2002) DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genomics 2:13–27

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS (2011) DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet 7(8):e1002243. doi:10.1371/journal.pgen.1002243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Wu S, Van Houten J, Wang Y, Ding B, Fei Z, Clarke TH, Reed JW, van der Knaap E (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J Exp Bot 65:2507–2520. doi:10.1093/jxb/eru141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro M, Kevers C, Dommes J, Gaspar T (2002) A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tissue Organ Cult 68:225–232

    Article  CAS  Google Scholar 

  • Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597. doi:10.1007/s00299-011-1202-z

    Article  CAS  PubMed  Google Scholar 

  • Nic-Can GI, Lopez-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas VM, Rojas-Herrera R, De-la-Peña C (2013) New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS One 8(8):e72160. doi:10.1371/journal.pone.0072160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pernisová M, Klímab P, Horák J, Válková M, Malbeck J, Soucek P, Reichman P, Hoyerová K, Dubová J, Friml J, Zazˇímalová E, Hejátko J (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci 106:3609–3614

    Article  PubMed  PubMed Central  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8. doi:10.1007/BF02772108

    Article  CAS  Google Scholar 

  • Pulianmackal AJ, Kareem AV, Durgaprasad K, Trivedi ZB, Prasad K (2014) Competence and regulatory interactions during regeneration in plants. Front Plant Sci 5:142. doi:10.3389/fpls.2014.00142

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez CD, Rodriguez A, Aguilar CR, Sánchez de Jiménez E (2011) Biochemical characterization of a maize novel peptide hormone. Protein Pept Lett 18:84–91

    Article  Google Scholar 

  • Rodríguez JL, Pascual J, Viejo M, Valledor L, Meijón M, Hasbún R, Yrei NY, Santamaría ME, Pérez M, Fernández-Fraga M, Berdasco M, Rodríguez-Fernández R, Cañal MJ (2012) Basic procedures for epigenetic analysis in plant cell and tissue culture. Methods Mol Biol 877:325–341. doi:10.1007/978-1-61779-818-4_25

    Article  PubMed  Google Scholar 

  • Sablowski R, Dornelas C (2014) Interplay between cell growth and cell cycle in plants. J Exp Bot 65(10):2703–2714. doi:10.1093/jxb/ert354

    Article  CAS  PubMed  Google Scholar 

  • Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS One 9(10):e111407–e111407. doi:10.1371/journal.pone.0111407

    Article  PubMed  PubMed Central  Google Scholar 

  • Schepetilnikov M, Dimitrova M, Mancera-Martínez E, Geldreich A, Keller M, Ryabova LA (2013) TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J 32(8):1087–1102. doi:10.1038/emboj.2013.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwessinger B, Rathjen JP (2015) Changing SERKs and priorities during plant life. Trends Plant Sci 20(9):531–533

    Article  CAS  PubMed  Google Scholar 

  • Singla B, Tyagi KA, Khurana PJ, Khurana P (2007) Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Mol Biol 65:677–692

    Article  CAS  PubMed  Google Scholar 

  • Solís MT, Rodríguez-Serrano M, Meijón M, Cañal MJ, Cifuentes A, Risueño MC, Testillano PS (2012) DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J Exp Bot 63(18):6431–6444

    Article  PubMed  PubMed Central  Google Scholar 

  • Sotelo R, Garrocho-Villegas V, Aguilar CR, Calderon ME, Sánchez de Jimenez E (2010) Coordination of cell growth and cell division in maize (Zea mays L.) relevance of the conserved TOR signal transduction pathway. In Vitro Cell Dev Biol-Plant 46:578–586

    Article  CAS  Google Scholar 

  • Souter M, Lyndsey K (2000) Polarity and signalling in plant embryogenesis. J Exp Bot 5:971–983

    Article  Google Scholar 

  • Spencer MWB, Casson SA, Lyndsey K (2007) Transcriptional profiling of the Arabidopsis embryo. Plant Physiol 143:924–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava LM (2002) Plant growth and development: hormones and environment. Academic Press, London p772

    Google Scholar 

  • Su YH, Zhang XS (2009) Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis. Plant Signal Behav 4:574–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filanova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Sheen J (2015) Novel links in the plant TOR kinase signaling network. Curr Opin Plant Biol 23:83–91

    Article  Google Scholar 

  • Xu L, Huang H (2014) Genetic and epigenetic controls of plant regeneration. Curr Top Dev Biol 108:1–33. doi:10.1016/B978-0-12-391498-9.00009-7

    Article  PubMed  Google Scholar 

  • Zhang S, Wong L, Meng L, Lemaux PG (2002) Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize (Zea mays L.) Planta 215:191–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Gertrud Lund from CINVESTAV for the global methylation analysis. The authors also thank undergraduate student Miguel Gandi Valdez Dávila for his help in the DNA methylation experiments. This research was financed by The Consejo Nacional de Ciencia y Tecnología (CONACYT) project 101327. VGV was a postdoctoral fellow of the DGAPA-UNAM program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estela Sánchez de Jiménez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Ewen Mullins.

Electronic supplementary material

ESM 1

(PDF 432 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrocho-Villegas, V., Aguilar, R. & de Jiménez, E.S. Contribution of the Zea mays insulin-like growth factor (ZmIGF) to the embryogenic competence of maize tissue cultures. In Vitro Cell.Dev.Biol.-Plant 53, 122–132 (2017). https://doi.org/10.1007/s11627-017-9808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-017-9808-7

Keywords

Navigation