Skip to main content
Log in

Soybean actin, heat shock protein, and ribosomal protein promoters direct tissue-specific transgene expression in transgenic soybean

  • Embryogenesis/somatic embryogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Soybean (Glycine max) promoters from an actin gene (GmActin), a ribosomal protein S11 gene (GmRpS11) and a heat shock protein 90 gene (GmHsp90), identified as being active during early induction of soybean somatic embryogenesis, were cloned, fused to the green fluorescence protein (gfp) gene and reintroduced into soybean for evaluation. All promoters displayed development- and tissue-specific regulation based on the expression of GFP in transgenic soybean. In seedlings, these three promoters gave rise to strong GFP expression in young roots, with very high levels of expression in the vascular tissues and root primordia. In older plants, promoter activity was observed in the vascular cambium of petioles, leaf midribs, and in the mesophyll of expanding leaves, but at reduced levels. The GmActin promoter gave very high GFP expression in developing and mature seeds. All three promoters displayed high activity following induction of somatic embryogenesis from immature soybean cotyledons. Comparison of promoter-regulated GFP transgene expression with transcriptome analysis using RNA-Seq revealed agreement in expression intensity in roots, leaves, and flowers but exceptions for expression in young developing seeds. Evaluation of specific promoters in transgenic plants is needed for proper elucidation of promoter-regulated transgene activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Barakat A, Szick-Miranda K, Chang I, Guyot R, Blanc G, Cooke R, Delseny M, Bailey-Serres J (2004) The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol 127:399–415

    Google Scholar 

  • Bryne ME (2009) A role for the ribosome in development. Trends Plant Sci 14:512–519

    Article  Google Scholar 

  • Buenrostro-Nava MT, Ling PP, Finer JJ (2006) Comparative analysis of 35S and lectin promoters in transgenic soybean tissue using an automated image acquisition system and image analysis. Plant Cell Rep 25:920–926

    Article  CAS  PubMed  Google Scholar 

  • Bulger M, Groudine M (2011) Functional and mechanistic diversity of distal transcriptional enhancers. Cell 144:327–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chai C, Lin Y, Shen D, Wu Y, Li H, Dou D (2013) Identification and functional characterization of the soybean GmaPPO12 promoter conferring Phytophthora sojae induced expression. PLoS ONE 8:e67670. doi:10.1371/journal.pone.0067670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiera JM, Finer JJ, Grabau EA (2004) Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol Biol 56:895–904

    Article  CAS  PubMed  Google Scholar 

  • Chiera JM, Streeter JG, Finer JJ (2006) Ononitol and pinitol production in transgenic soybean containing the inositol methyl transferase gene from Mesembryanthemum crystallinum. Plant Sci 171:647–654

    Article  CAS  Google Scholar 

  • Chiera JM, Bouchard RA, Dorsey SL, Park E, Buenrostro-Nava MT, Ling PP, Finer JJ (2007) Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Rep 26:1501–1509

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Axelos M, Bardet C, Atanassova R, Chaubet N, Lescure B (1993) Modular organization and developmental activity of an Arabidopsis thaliana EF-1α gene promoter. Mol Gen Genet 238:428–436

    Article  CAS  PubMed  Google Scholar 

  • De La Torre CM, Finer JJ (2014) The intron and 5’ distal region of the soybean Gmubi promoter contribute to very high levels of gene expression in transiently and stably transformed tissues. Plant Cell Rep. doi:10.1007/s00299-014-1691-7

    Google Scholar 

  • Deng W, Blobel GA (2010) Do chromatic loops provide epigenetic gene expression states? Curr Opin Genet Dev 20:548–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finer JJ (1988) Apical proliferation of embryogenic tissue of soybean [Glycine max (L.) Merrill]. Plant Cell Rep 7:238–241

    Article  CAS  PubMed  Google Scholar 

  • Finer JJ, Larkin KM (2008) Genetic transformation of soybean using particle bombardment and SAAT approaches. In: Kirti PB (ed) Handbook of New Technologies for Genetic Improvement of Legumes. CRC Press, Boca Raton, pp 103–125

    Google Scholar 

  • Finer JJ, McMullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev Biol – Plant 27:175–182

    Article  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:232–238

    Article  Google Scholar 

  • Fulton TM, Chunzoongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • GMO Compass (2014) Soy, maize, cotton and rapeseed: the big four. http://www.gmo-compass.org/eng/agri_biotechnology/gmo_planting/. Cited 1 Aug 2014

  • Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500–505

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    Article  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Martinelli AP, Bouchard RA, Finer JJ (2009) A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Rep 28:837–849

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Bouchard RA, Rushton PJ, Jones ML, Chen X, Timko MP, Finer JJ (2010) High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC Plant Biol 10:1471–2229

    Article  Google Scholar 

  • Hightower RC, Meagher RB (1985) Divergence and differential expression of soybean actin genes. EMBO J 4:1–8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hobbs SLA, Warkentin TD, DeLong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  CAS  PubMed  Google Scholar 

  • Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57:109–125

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy MK, McKinney EC, Meagher RB (2002) Functional nonequivalency of actin isovariants in Arabidopsis. Mol Biol Cell 13:251–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koyasu S, Nishida E, Kadowaki T, Matsuzaki F, Iida K, Harada F, Kasuga M, Sakai H, Yahara I (1986) Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc Natl Acad Sci U S A 83:8054–8058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics to study legume seed development. Plant Physiol 144:562–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G (2010) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63:86–99

    CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Lindsey K, Topping JF, Wei W (1998) Identification of plant genes by entrapment and activation tagging. In: Lindsey K (ed) Transgenic plant research. Hardwood Academic Publishers, Amsterdam, pp 75–90

    Google Scholar 

  • Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu A-J, Rathjen JP, Bendahmane A, Day L, Balcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22:5690–5699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 6:143–156

    Article  CAS  PubMed  Google Scholar 

  • Mayor A, Martinon F, De Smedt T, Pétrilli V, Tschopp J (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nature Immun 8:497–503

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, An Y, Huang S, Mckinney EC, Meagher RB (1996) The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol 111:699–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narváez-Vásquez J, Orozeo-Cárdenas ML, Clarence AR (1992) Differential expression of a chimeric CaMV-tomato proteinase inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfa plants. Plant Mol Biol 20:1149–1157

    Article  PubMed  Google Scholar 

  • Nilsson O, Little CHA, Sandberg C, Olsson O (1996) Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol Biol 31:887–895

    Article  CAS  PubMed  Google Scholar 

  • Nishida E, Koyasu S, Sakai H, Yahara I (1986) Calmodulin-regulated binding of the 90-kDa heat shock protein to actin filaments. J Biol Chem 261:16033–16036

    CAS  PubMed  Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461

    Article  CAS  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeong JC, Cheong MS, Choi W, Lee SY, Cho MJ, Kim MC, Chung WS, Yun DJ (2009) Functional analysis of the stress-inducible soybean calmodulin isoform-4 (GmCaM-4) promoter in transgenic tobacco plants. Mol Cells 27:475–480. doi:10.1007/s10059-009-0063-6

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski WP, Somers DA (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci U S A 95:12106–12110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasinos C, Krampis K, Samakovli D, Hatzopoulos P (2005) Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development. J Exp Bot 56:633–644

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed, Cold Spring Harbor Laboratory

  • Santarem ER, Pelissier B, Finer JJ (1997) Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev Biol – Plant 33:13–19

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Grill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175

    Article  CAS  Google Scholar 

  • Severin AJ, Woody JL, Bolon Y, Joseph B, Diers BW, Farmer AD, Muehlauer GJ, Nelso RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:1471–2229

    Article  Google Scholar 

  • Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51:257–288

    Article  CAS  PubMed  Google Scholar 

  • Strömvik MV, Sundararaman VP, Vodkin LO (1999) A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs. Plant Mol Biol 41:217–231

    Article  PubMed  Google Scholar 

  • Sunikumar G, Mohr L, Lopata-Finch E, Emani C, Rathore KS (2002) Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol 50:463–474

    Article  Google Scholar 

  • Taparia Y, Fouad WM, Gallo M, Altpeter F (2013) Rapid production of transgenic sugarcane with the introduction of simple loci following biolistic transfer of a minimal expression cassette and direct embryogenesis. In Vitro Cell Dev Biol – Plant 48:15–22

    Article  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thirkettle-Watts D, McCabe TC, Clifton R, Moore C, Finnegan PM, Day DA, Whelan J (2003) Analysis of the alternative oxidase promoters from soybean. Plant Physiol 133:1158–1169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tzafrir I, Dickerman A, Brazhnik O, Nguyen O, McElver J, Frye C, Patton D, Meinke D (2003) The Arabidopsis Seed Genes project. Nucleic Acids Res 31:90–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Robert Bouchard for the initial promoter cloning and Cheri Nemes for generation of the transgenic plants of each promoter. We would also like to thank Tea Meulia in the Molecular and Cellular Imaging Center at The Ohio State University for providing research facilities and the technical support for use of the confocal microscope. Salaries and research support were provided by the United Soybean Board and by the State and Federal funds appropriated to The Ohio State University/Ohio Agricultural Research and Development Center. Mention of trademark or proprietary products does not constitute a guarantee or warranty of the product by OSU/OARDC and also does not imply approval to the exclusion of other products that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Finer.

Additional information

Editor: John Forster

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

ESM 2

(DOCX 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Finer, J.J. Soybean actin, heat shock protein, and ribosomal protein promoters direct tissue-specific transgene expression in transgenic soybean. In Vitro Cell.Dev.Biol.-Plant 51, 9–18 (2015). https://doi.org/10.1007/s11627-014-9656-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-014-9656-7

Keywords

Navigation