Skip to main content

Advertisement

Log in

Applications of artificial intelligence in magnetic resonance imaging of primary pediatric cancers: a scoping review and CLAIM score assessment

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purposes

To review the uses of AI for magnetic resonance (MR) imaging assessment of primary pediatric cancer and identify common literature topics and knowledge gaps. To assess the adherence of the existing literature to the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines.

Materials and methods

A scoping literature search using MEDLINE, EMBASE and Cochrane databases was performed, including studies of > 10 subjects with a mean age of < 21 years. Relevant data were summarized into three categories based on AI application: detection, characterization, treatment and monitoring. Readers independently scored each study using CLAIM guidelines, and inter-rater reproducibility was assessed using intraclass correlation coefficients.

Results

Twenty-one studies were included. The most common AI application for pediatric cancer MR imaging was pediatric tumor diagnosis and detection (13/21 [62%] studies). The most commonly studied tumor was posterior fossa tumors (14 [67%] studies). Knowledge gaps included a lack of research in AI-driven tumor staging (0/21 [0%] studies), imaging genomics (1/21 [5%] studies), and tumor segmentation (2/21 [10%] studies). Adherence to CLAIM guidelines was moderate in primary studies, with an average (range) of 55% (34%–73%) CLAIM items reported. Adherence has improved over time based on publication year.

Conclusion

The literature surrounding AI applications of MR imaging in pediatric cancers is limited. The existing literature shows moderate adherence to CLAIM guidelines, suggesting that better adherence is required for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349:255–60. https://doi.org/10.1126/SCIENCE.AAA8415.

    Article  CAS  PubMed  Google Scholar 

  2. Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature. 2015;521:452–9. https://doi.org/10.1038/nature14541.

    Article  CAS  PubMed  Google Scholar 

  3. Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu X, Chen K, Wu T, et al. Use of multimodality imaging and artificial intelligence for diagnosis and prognosis of early stages of Alzheimer’s disease. Transl Res. 2018;194:56–67. https://doi.org/10.1016/J.TRSL.2018.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roblot V, Giret Y, Bou Antoun M, et al. Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging. 2019;100:243–9. https://doi.org/10.1016/J.DIII.2019.02.007.

    Article  CAS  PubMed  Google Scholar 

  6. Dalmiş MU, Gubern-Mérida A, Vreemann S, et al. Artificial intelligence-based classification of breast lesions imaged with a multiparametric breast MRI protocol with ultrafast DCE-MRI, T2, and DWI. Invest Radiol. 2019;54:325–32. https://doi.org/10.1097/RLI.0000000000000544.

    Article  PubMed  Google Scholar 

  7. Ferrari R, Mancini-Terracciano C, Voena C, et al. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Eur J Radiol. 2019;118:1–9. https://doi.org/10.1016/J.EJRAD.2019.06.013.

    Article  CAS  PubMed  Google Scholar 

  8. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/CAAC.21660.

    Article  PubMed  Google Scholar 

  9. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69:127–57. https://doi.org/10.3322/CAAC.21552.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Daldrup-Link H. Artificial intelligence applications for pediatric oncology imaging. Pediatr Radiol. 2019;49:1384–90. https://doi.org/10.1007/S00247-019-04360-1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Davendralingam N, Sebire NJ, Arthurs OJ, Shelmerdine SC. Artificial intelligence in paediatric radiology: future opportunities. Br J Radiol. 2021;94:20200975. https://doi.org/10.1259/bjr.20200975.

    Article  PubMed  Google Scholar 

  12. Otjen JP, Moore MM, Romberg EK, et al. The current and future roles of artificial intelligence in pediatric radiology. Pediatr Radiol. 2021. https://doi.org/10.1007/s00247-021-05086-9.

    Article  PubMed  Google Scholar 

  13. Martin D, Tong E, Kelly B, et al. Current perspectives of artificial intelligence in pediatric neuroradiology: an overview. Front Radiol. 2021. https://doi.org/10.3389/fradi.2021.713681.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zheng Q, Yang L, Zeng B, et al. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: a systematic review and meta-analysis. EClinicalMedicine. 2021. https://doi.org/10.1016/j.eclinm.2020.100669.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Freeman K, Geppert J, Stinton C, et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ. 2021. https://doi.org/10.1136/BMJ.N1872.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020. https://doi.org/10.1136/bmj.m689.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Heal. 2019;1:e271–97. https://doi.org/10.1016/S2589-7500(19)30123-2.

    Article  Google Scholar 

  18. Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiology. 2020;2:e200029. https://doi.org/10.1148/RYAI.2020200029.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cruz Rivera S, Liu X, Chan A-W, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet Digit Heal. 2020;2:e549–60. https://doi.org/10.1016/S2589-7500(20)30219-3.

    Article  Google Scholar 

  20. Cruz Rivera S, Liu X, Chan A-W, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med. 2020;26:1351–63. https://doi.org/10.1038/s41591-020-1037-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rivera SC, Liu X, Chan A-W, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. BMJ. 2020. https://doi.org/10.1136/bmj.m3210.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu X, Cruz Rivera S, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med. 2020;26:1364–74. https://doi.org/10.1038/s41591-020-1034-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu X, Cruz Rivera S, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit Heal. 2020;2:e537–48. https://doi.org/10.1016/S2589-7500(20)30218-1.

    Article  Google Scholar 

  24. Liu X, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. BMJ. 2020. https://doi.org/10.1136/bmj.m3164.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467–73. https://doi.org/10.7326/M18-0850.

    Article  PubMed  Google Scholar 

  26. Ashby D. Practical statistics for medical research. Douglas G. Altman, Chapman and Hall, London, 1991. No. of pages: 611. Price: £32.00. Stat Med. 1991;10:1635–6. https://doi.org/10.1002/SIM.4780101015.

    Article  Google Scholar 

  27. Quon JL, Bala W, Chen LC, et al. Deep learning for pediatric posterior fossa tumor detection and classification: a multi-institutional study. Am J Neuroradiol. 2020;41:1718–25. https://doi.org/10.3174/AJNR.A6704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou H, Hu R, Tang O, et al. Automatic machine learning to differentiate pediatric posterior fossa tumors on routine MR imaging. Am J Neuroradiol. 2020;41:1279–85. https://doi.org/10.3174/AJNR.A6621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Orphanidou-Vlachou E, Vlachos N, Davies NP, et al. Texture analysis of T1- and T2-weighted MR images and use of probabilistic neural network to discriminate posterior fossa tumours in children. NMR Biomed. 2014;27:632–9. https://doi.org/10.1002/NBM.3099.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fernández IS, Yang E, Calvachi P, et al. Deep learning in rare disease. Detection of tubers in tuberous sclerosis complex. PLoS One. 2020;15:e0232376. https://doi.org/10.1371/JOURNAL.PONE.0232376.

    Article  Google Scholar 

  31. Bidiwala S, Pittman T. Neural network classification of pediatric posterior fossa tumors using clinical and imaging data. Pediatr Neurosurg. 2004;40:8–15. https://doi.org/10.1159/000076571.

    Article  PubMed  Google Scholar 

  32. Fetit AE, Novak J, Peet AC, Arvanitis TN. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed. 2015;28:1174–84. https://doi.org/10.1002/NBM.3353.

    Article  PubMed  Google Scholar 

  33. Dong J, Li L, Liang S, et al. Differentiation between ependymoma and medulloblastoma in children with radiomics approach. Acad Radiol. 2021;28:318–27. https://doi.org/10.1016/J.ACRA.2020.02.012.

    Article  PubMed  Google Scholar 

  34. Gutierrez DR, Awwad A, Meijer L, et al. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. Am J Neuroradiol. 2014;35:1009–15. https://doi.org/10.3174/AJNR.A3784.

    Article  Google Scholar 

  35. Li M, Wang H, Shang Z, et al. Ependymoma and pilocytic astrocytoma: differentiation using radiomics approach based on machine learning. J Clin Neurosci. 2020;78:175–80. https://doi.org/10.1016/J.JOCN.2020.04.080.

    Article  PubMed  Google Scholar 

  36. Zarinabad N, Abernethy LJ, Avula S, et al. Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo 3T 1H-MR spectroscopy—a multi-center study. Magn Reson Med. 2018;79:2359–66. https://doi.org/10.1002/MRM.26837.

    Article  PubMed  Google Scholar 

  37. Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol. 2013;20:387–97. https://doi.org/10.1097/PAP.0B013E3182A92D0D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banerjee I, Crawley A, Bhethanabotla M, et al. Transfer learning on fused multiparametric MR images for classifying histopathological subtypes of rhabdomyosarcoma. Comput Med Imaging Graph. 2018;65:167–75. https://doi.org/10.1016/J.COMPMEDIMAG.2017.05.002.

    Article  PubMed  Google Scholar 

  39. Artzi M, Gershov S, Ben-Sira L, et al. Automatic segmentation, classification, and follow-up of optic pathway gliomas using deep learning and fuzzy c-means clustering based on MRI. Med Phys. 2020;47:5693–701. https://doi.org/10.1002/MP.14489.

    Article  PubMed  Google Scholar 

  40. Iv M, Zhou M, Shpanskaya K, et al. MR imaging-based radiomic signatures of distinct molecular subgroups of medulloblastoma. Am J Neuroradiol. 2019;40:154–61. https://doi.org/10.3174/AJNR.A5899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang B, Law MW-M, Khong P-L. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74. https://doi.org/10.1148/radiol.2511081300.

    Article  PubMed  Google Scholar 

  42. Wang Y-R, Baratto L, Hawk KE, et al. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. Eur J Nucl Med Mol Imaging. 2021;489(48):2771–81. https://doi.org/10.1007/S00259-021-05197-3.

    Article  Google Scholar 

  43. Florkow MC, Guerreiro F, Zijlstra F, et al. Deep learning-enabled MRI-only photon and proton therapy treatment planning for paediatric abdominal tumours. Radiother Oncol. 2020;153:220–7. https://doi.org/10.1016/J.RADONC.2020.09.056.

    Article  CAS  PubMed  Google Scholar 

  44. Maspero M, Bentvelzen LG, Savenije MHF, et al. Deep learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy. Radiother Oncol. 2020;153:197–204. https://doi.org/10.1016/J.RADONC.2020.09.029.

    Article  CAS  PubMed  Google Scholar 

  45. Udaka YT, Packer RJ. Pediatric brain tumors. Neurol Clin. 2018;36:533–56. https://doi.org/10.1016/J.NCL.2018.04.009.

    Article  PubMed  Google Scholar 

  46. Mukherkjee D, Saha P, Kaplun D, et al. Brain tumor image generation using an aggregation of GAN models with style transfer. Sci Rep. 2022;12:9141. https://doi.org/10.1038/s41598-022-12646-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gupta RK, Bharti S, Kunhare N, et al. Brain tumor detection and classification using cycle generative adversarial networks. Interdiscip Sci Comput Life Sci. 2022;14:485–502. https://doi.org/10.1007/s12539-022-00502-6.

    Article  Google Scholar 

  48. Ardalan Z, Subbian V. Transfer learning approaches for neuroimaging analysis: a scoping review. Front Artif Intell. 2022. https://doi.org/10.3389/frai.2022.780405.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu J, Glicksberg BS, Su C, et al. Federated learning for healthcare informatics. J Healthc Informatics Res. 2021;5:1–19. https://doi.org/10.1007/s41666-020-00082-4.

    Article  Google Scholar 

  50. Plana A, Furner B, Palese M, et al. Pediatric cancer data commons: federating and democratizing data for childhood cancer research. JCO Clin Cancer Inform. 2021. https://doi.org/10.1200/CCI.21.00075.

    Article  PubMed  Google Scholar 

  51. Prager R, Bowdridge J, Kareemi H, et al. Adherence to the standards for reporting of diagnostic accuracy (STARD) 2015 guidelines in acute point-of-care ultrasound research. JAMA Netw Open. 2020;3:e203871–e203871. https://doi.org/10.1001/JAMANETWORKOPEN.2020.3871.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hong PJ, Korevaar DA, McGrath TA, et al. Reporting of imaging diagnostic accuracy studies with focus on MRI subgroup: adherence to STARD 2015. J Magn Reson Imaging. 2018;47:523–44. https://doi.org/10.1002/JMRI.25797.

    Article  PubMed  Google Scholar 

  53. Thiessen M, Vogel JA, Byyny RL, et al. Emergency ultrasound literature and adherence to standards for reporting of diagnostic accuracy criteria. J Emerg Med. 2020;58:636–46. https://doi.org/10.1016/J.JEMERMED.2019.09.029.

    Article  PubMed  Google Scholar 

  54. Korevaar DA, Wang J, van Enst WA, et al. Reporting diagnostic accuracy studies: some improvements after 10 years of STARD. Radiology. 2015;274:781–9. https://doi.org/10.1148/radiol.14141160.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the Samuel Lunenfeld Summer Studentship Award 2021 (project ID: 6120100197), and by The Terry Fox New Frontiers Program Project Grant in Early Detection and Prevention of Li-Fraumeni Syndrome (2018–2023).

Author information

Authors and Affiliations

Authors

Contributions

Study concepts, BT, AG, MST, and ASD; Literature research: BT, AG, MST, and ASD; Data analysis and interpretation: BT, AG, MST, and ASD; Manuscript drafting BT, and ASD; Manuscript editing and revisions, all authors; Final approval of the manuscript: all authors.

Corresponding author

Correspondence to Andrea S. Doria.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 301 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsang, B., Gupta, A., Takahashi, M.S. et al. Applications of artificial intelligence in magnetic resonance imaging of primary pediatric cancers: a scoping review and CLAIM score assessment. Jpn J Radiol 41, 1127–1147 (2023). https://doi.org/10.1007/s11604-023-01437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-023-01437-8

Keywords

Navigation