Skip to main content

Advertisement

Log in

The current and future roles of artificial intelligence in pediatric radiology

  • Artificial intelligence in pediatric radiology
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Artificial intelligence (AI) is a broad and complicated concept that has begun to affect many areas of medicine, perhaps none so much as radiology. While pediatric radiology has been less affected than other radiology subspecialties, there are some well-developed and some nascent applications within the field. This review focuses on the use of AI within pediatric radiology for image interpretation, with descriptive summaries of the literature to date. We highlight common features that enable successful application of the technology, along with some of the limitations that can inhibit the development of this field. We present some ideas for further research in this area and challenges that must be overcome, with an understanding that technology often advances in unpredictable ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. West E, Mutasa S, Zhu Z, Ha R (2019) Global trend in artificial intelligence–based publications in radiology from 2000 to 2018. AJR Am J Roentgenol 213:1204–1206

    Article  PubMed  Google Scholar 

  2. Moore MM, Slonimsky E, Long AD et al (2019) Machine learning concepts, concerns and opportunities for a pediatric radiologist. Pediatr Radiol 49:509–516

    Article  PubMed  Google Scholar 

  3. Daldrup-Link H (2019) Artificial intelligence applications for pediatric oncology imaging. Pediatr Radiol 49:1384–1390

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cherukuri V, Ssenyonga P, Warf BC et al (2018) Learning based segmentation of CT brain images: application to postoperative hydrocephalic scans. IEEE Trans Biomed Eng 65:1871–1884

    Article  PubMed  Google Scholar 

  5. Mahomed N, van Ginneken B, Philipsen RHHM et al (2020) Computer-aided diagnosis for World Health Organization–defined chest radiograph primary-endpoint pneumonia in children. Pediatr Radiol 50:482–491

    Article  PubMed  Google Scholar 

  6. Alqahtani FF, Messina F, Offiah AC (2019) Are semi-automated software program [sic] designed for adults accurate for the identification of vertebral fractures in children? Eur Radiol 29:6780–6789

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davendralingam N, Sebire NJ, Arthurs OJ, Shelmerdine SC (2021) Artificial intelligence in paediatric radiology: future opportunities. Br J Radiol 94:20200975

    Article  PubMed  Google Scholar 

  8. Benjamens S, Dhunnoo P, Meskó B (2020) The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 3:118

    Article  PubMed  PubMed Central  Google Scholar 

  9. The Medical Futurist (2021) FDA-approved A.I.-based algorithms. https://medicalfuturist.com/fda-approved-ai-based-algorithms/. Accessed 26 Jan 2020

  10. Lin DJ, Johnson PM, Knoll F, Lui YW (2021) Artificial intelligence for MR image reconstruction: an overview for clinicians. J Magn Reson Imaging 53:1015–1028

    Article  PubMed  Google Scholar 

  11. Johnson PM, Drangova M (2019) Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Magn Reson Med 82:901–910

    PubMed  Google Scholar 

  12. Wolterink JM, Leiner T, Viergever MA, Isgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36:2536–2545

    Article  PubMed  Google Scholar 

  13. MacDougall RD, Zhang Y, Callahan MJ et al (2019) Improving low-dose pediatric abdominal CT by using convolutional neural networks. Radiol Artif Intell 1:e180087

    Article  PubMed  PubMed Central  Google Scholar 

  14. Winkel DJ, Heye T, Weikert TJ et al (2019) Evaluation of an AI-based detection software for acute findings in abdominal computed tomography scans: toward an automated work list prioritization of routine CT examinations. Investig Radiol 54:55–59

    Article  Google Scholar 

  15. Prevedello LM, Erdal BS, Ryu JL et al (2017) Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285:923–931

    Article  PubMed  Google Scholar 

  16. Halabi SS, Prevedello LM, Kalpathy-Cramer J et al (2019) The RSNA pediatric bone age machine learning challenge. Radiology 290:498–503

    Article  PubMed  Google Scholar 

  17. Larson DB, Chen MC, Lungren MP et al (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322

    Article  PubMed  Google Scholar 

  18. Bilbily A, Cicero M (2021) 16BIT algorithm: predicting skeletal age. https://www.16bit.ai/bone-age. Accessed 29 Mar 2021

  19. Reddy NE, Rayan JC, Annapragada AV et al (2020) Bone age determination using only the index finger: a novel approach using a convolutional neural network compared with human radiologists. Pediatr Radiol 50:516–523

    Article  PubMed  Google Scholar 

  20. Pan I, Baird GL, Mutasa S et al (2020) Rethinking Greulich and Pyle: a deep learning approach to pediatric bone age assessment using pediatric trauma hand radiographs. Radiol Artif Intell 2:e190198

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pan I, Thodberg HH, Halabi SS et al (2019) Improving automated pediatric bone age estimation using ensembles of models from the 2017 RSNA Machine Learning Challenge. Radiol Artif Intell 1:e190053

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28:52–66

    Article  PubMed  Google Scholar 

  23. Yi PH, Kim TK, Wei J et al (2019) Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning. Pediatr Radiol 49:1066–1070

    Article  PubMed  Google Scholar 

  24. Jeffries BF, Tarlton M, De Smet AA et al (1980) Computerized measurement and analysis of scoliosis: a more accurate representation of the shape of the curve. Radiology 134:381–385

    Article  CAS  PubMed  Google Scholar 

  25. Horng M-H, Kuok C-P, Fu M-J et al (2019) Cobb angle measurement of spine from X-ray images using convolutional neural network. Comput Math Methods Med 2019:1–18

    Article  Google Scholar 

  26. Wu H, Bailey C, Rasoulinejad P, Li S (2018) Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-net. Med Image Anal 48:1–11

    Article  PubMed  Google Scholar 

  27. Yang J, Zhang K, Fan H et al (2019) Development and validation of deep learning algorithms for scoliosis screening using back images. Commun Biol 2:390

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zheng Q, Furth SL, Tasian GE, Fan Y (2019) Computer-aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features. J Pediatr Urol 15:75.e1–75.e7

  29. Pilla NI, Rinaldi J, Hatch M, Hennrikus W (2020) Epidemiological analysis of displaced supracondylar fractures. Cureus 12:e7734

    PubMed  PubMed Central  Google Scholar 

  30. Choi JW, Cho YJ, Lee S et al (2020) Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography. Investig Radiol 55:101–110

    Article  Google Scholar 

  31. Rayan JC, Reddy N, Kan JH et al (2019) Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making. Radiol Artif Intell 1:e180015

    Article  PubMed  PubMed Central  Google Scholar 

  32. Facebook Research (2021) FastText website. https://research.fb.com/downloads/fasttext/. Accessed 29 Mar 2021

  33. England JR, Gross JS, White EA et al (2018) Detection of traumatic pediatric elbow joint effusion using a deep convolutional neural network. AJR Am J Roentgenol 211:1361–1368

    Article  PubMed  Google Scholar 

  34. Banerjee I, Crawley A, Bhethanabotla M et al (2018) Transfer learning on fused multiparametric MR images for classifying histopathological subtypes of rhabdomyosarcoma. Comput Med Imaging Graph 65:167–175

    Article  PubMed  Google Scholar 

  35. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Comm ACM 60

  36. Somasundaram E, Dillman JR, Crotty EJ et al (2020) Automatic detection of inadequate pediatric lateral neck radiographs of the airway and soft tissues using deep learning. Radiol Artif Intell 2:e190226

    Article  PubMed  PubMed Central  Google Scholar 

  37. The ADHD-200 Consortium (2012) The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci 6:62

    PubMed Central  Google Scholar 

  38. Chen M, Li H, Wang J et al (2019) A multichannel deep neural network model analyzing multiscale functional brain connectome data for attention deficit hyperactivity disorder detection. Radiol Artif Intell 2:e190012

    Article  PubMed  PubMed Central  Google Scholar 

  39. Otjen JP, Stanescu AL, Alessio AM, Parisi MT (2020) Ovarian torsion: developing a machine-learned algorithm for diagnosis. Pediatr Radiol 50:706–714

    Article  PubMed  Google Scholar 

  40. Zucker EJ, Barnes ZA, Lungren MP et al (2020) Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis. J Cyst Fibros 19:131–138

    Article  PubMed  Google Scholar 

  41. Li H, He L, Dudley JA et al (2021) DeepLiverNet: a deep transfer learning model for classifying liver stiffness using clinical and T2-weighted magnetic resonance imaging data in children and young adults. Pediatr Radiol 51:392–402

    Article  PubMed  Google Scholar 

  42. Kim S, Yoon H, Lee M-J et al (2019) Performance of deep learning-based algorithm for detection of ileocolic intussusception on abdominal radiographs of young children. Sci Rep 9:19420

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shen L, Shpanskaya K, Lee E et al (2018) Deep learning with attention to predict gestational age of the fetal brain. https://www.arxiv-vanity.com/papers/1812.07102/. Accessed 29 Mar 2021

  44. Shi W, Yan G, Li Y et al (2020) Fetal brain age estimation and anomaly detection using attention-based deep ensembles with uncertainty. Neuroimage 223:117316

    Article  PubMed  Google Scholar 

  45. Liao L, Zhang X, Zhao F et al (2020) Multi-branch deformable convolutional neural network with label distribution learning for fetal brain age prediction. Presented at the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City

  46. Pisapia JM, Akbari H, Rozycki M et al (2018) Use of fetal magnetic resonance image analysis and machine learning to predict the need for postnatal cerebrospinal fluid diversion in fetal ventriculomegaly. JAMA Pediatr 172:128

    Article  PubMed  Google Scholar 

  47. Attallah O, Sharkas MA, Gadelkarim H (2019) Fetal brain abnormality classification from MRI images of different gestational age. Brain Sci 9:231

    Article  PubMed Central  Google Scholar 

  48. Li J, Luo Y, Shi L et al (2020) Automatic fetal brain extraction from 2D in utero fetal MRI slices using deep neural network. Neurocomputing 378:335–349

    Article  Google Scholar 

  49. Wang X, Peng Y, Lu L et al (2017) ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Presented at the 2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), Honolulu

  50. National Science Foundation (2020) Artificial intelligence at NSF. https://www.nsf.gov/cise/ai.jsp. Accessed 29 Mar 2021

  51. Joint European Disruptive Initiative (JEDI) (2021) Website. https://jedi.group/. Accessed 29 Mar 2021

  52. Amazon (2021) Amazon research awards. https://www.amazon.science/research-awards. Accessed 29 Mar 2021

  53. Google (2021) Working together to apply AI for social good. https://ai.google/social-good/impact-challenge. Accessed 29 Mar 2021

  54. Yune S, Lee H, Kim M et al (2019) Beyond human perception: sexual dimorphism in hand and wrist radiographs is discernible by a deep learning model. J Digit Imaging 32:665–671

    Article  PubMed  Google Scholar 

  55. Wagner MW, Bilbily A, Beheshti M et al (2021) Artificial intelligence and radiomics in pediatric molecular imaging. Methods 188:37–43

    Article  CAS  PubMed  Google Scholar 

  56. Wang H, Zhang J, Bao S et al (2020) Preoperative MRI-based radiomic machine-learning nomogram may accurately distinguish between benign and malignant soft-tissue lesions: a two-center study. J Magn Reson Imaging 52:873–882

    Article  PubMed  Google Scholar 

  57. Liu B, Chi W, Li X et al (2020) Evolving the pulmonary nodules diagnosis from classical approaches to deep learning-aided decision support: three decades’ development course and future prospect. J Cancer Res Clin Oncol 146:153–185

    Article  PubMed  Google Scholar 

  58. Data Science Institute, American College of Radiology (2021) Empowering machine learning in radiology. https://www.acrdsi.org/. Accessed 29 Mar 2021

  59. Gartner (2021) Gartner hype cycle: interpreting technology hype. https://www.gartner.com/en/research/methodologies/gartner-hype-cycle. Accessed 29 Sep 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh S. Iyer.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otjen, J.P., Moore, M.M., Romberg, E.K. et al. The current and future roles of artificial intelligence in pediatric radiology. Pediatr Radiol 52, 2065–2073 (2022). https://doi.org/10.1007/s00247-021-05086-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05086-9

Keywords

Navigation