Skip to main content

Advertisement

Log in

The Protective Effect of Epoxyeicosatrienoic Acids on Cerebral Ischemia/Reperfusion Injury is Associated with PI3K/Akt Pathway and ATP-Sensitive Potassium Channels

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 14 March 2015

Abstract

Epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolite of arachidonic acid, have been demonstrated to have neuroprotective effect. Phosphatidylinositol 3-kinase (PI3K)/Akt and ATP-sensitive potassium (KATP) channels are thought to be important factors that mediate neuroprotection. However, little is known about the role of PI3K/Akt and KATP channels in brain after EETs administration. In vitro experiment, oxygen–glucose deprivation (OGD) was performed in cultured rat cerebral microvascular smooth muscle cells (SMCs) for 4 h. The effect of 14,15-EET on OGD induced cell apoptosis was examined after reoxygenation. Western blot and real-time PCR were used to analyze the expression of Kir6.1, SUR2B (two subunits of KATP channels) and p-Akt on cerebral microvascular SMCs. In vivo experiments, we use 12-(3-adamantan-1-yl-ureido)-dodecanoic acid [AUDA, a specific soluble epoxide hydrolase (sEH) inhibitor] to confirm the effect of EETs indirectly. Rats were injected intraperitoneally with AUDA before being subjected to middle cerebral artery occlusion (MCAO). We detected the apoptosis and the expression of p-Akt, Kir6.1 and SUR2B in ischemic penumbra. The results showed that EETs protect against cerebral ischemia/reperfusion (I/R) injury and upregulated the expression of p-Akt and Kir6.1 in both of ischemic penumbra and OGD induced cerebral microvascular SMCs. The protective effect was inhibited by Wortmannin (a specific PI3K inhibitor) and Glib (a specific KATP inhibitor) respectively in vitro experiment. In conclusion, these results suggested that the protective effect of EETs on cerebral I/R injury is associated with PI3K/Akt pathway and KATP channels. Furthermore, the PI3K pathway may contribute to mediating KATP channels on cerebral microvascular SMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EETs:

Epoxyeicosatrienoic acids

PI3K:

Phosphatidylinositol 3-kinase

KATP:

ATP-sensitive potassium

I/R:

Ischemia/reperfusion

OGD:

Oxygen–glucose deprivation

OGD + R:

Oxygen–glucose deprivation + reoxygenation

AA:

Arachidonic acid

MCAO:

Middle cerebral artery occlusion

References

  1. Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32:160–169

    Article  CAS  PubMed  Google Scholar 

  2. Sudhahar V, Shaw S, Imig JD (2010) Epoxyeicosatrienoic acid analogs and vascular function. Curr Med Chem 17:1181–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Imig JD (2010) Targeting epoxides for organ damage in hypertension. J Cardiovasc Pharmacol 56:329–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Dorrance AM, Rupp N, Pollock DM, Newman JW, Hammock BD, Imig JD (2005) An epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA), reduces ischemic cerebral infarct size in stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 46:842–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Simpkins AN, Rudic RD, Schreihofer DA, Roy S, Manhiani M, Tsai HJ, Hammock BD, Imig JD (2009) Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. Am J Pathol 174:2086–2095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sarkar P, Zaja I, Bienengraeber M, Rarick KR, Terashvili M, Canfield S, Falck JR, Harder DR (2014) Epoxyeicosatrienoic acids pre-treatment improves amyloid beta-induced mitochondrial dysfunction in cultured rat hippocampal astrocytes. Am J Physiol Heart Circ Physiol 306(4):H475–H484. doi:10.1152/ajpheart.00001.2013

  7. Armstead WM, Ganguly K, Riley J, Zaitsev S, Cines DB, Higazi AA, Muzykantov VR (2012) RBC-coupled tPA prevents whereas tPA aggravates JNK MAPK-mediated impairment of ATP- and Ca-sensitive K channel-mediated cerebrovasodilation after cerebral photothrombosis. Transl Stroke Res 3:114–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Xu X, Chua CC, Gao J, Chua KW, Wang H, Hamdy RC, Chua BH (2008) Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway. Brain Res 1227:12–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Shioda N, Han F, Fukunaga K (2009) Role of Akt and ERK signaling in the neurogenesis following brain ischemia. Int Rev Neurobiol 85:375–387

    Article  CAS  PubMed  Google Scholar 

  10. Yang S, Lin L, Chen JX, Lee CR, Seubert JM, Wang Y, Wang H, Chao ZR, Tao DD, Gong JP, Lu ZY, Wang DW, Zeldin DC (2007) Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. Am J Physiol Heart Circ Physiol 293:H142–H151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Batchu SN, Chaudhary KR, El-Sikhry H, Yang W, Light PE, Oudit GY, Seubert JM (2012) Role of PI3Kalpha and sarcolemmal ATP-sensitive potassium channels in epoxyeicosatrienoic acid mediated cardioprotection. J Mol Cell Cardiol 53:43–52

    Article  CAS  PubMed  Google Scholar 

  12. Yokoshiki H, Sunagawa M, Seki T, Sperelakis N (1998) ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol 274:C25–C37

    CAS  PubMed  Google Scholar 

  13. Ashcroft FM, Gribble FM (1998) Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci 21:288–294

    Article  CAS  PubMed  Google Scholar 

  14. Perez-Pinzon MA, Born JG (1999) Rapid preconditioning neuroprotection following anoxia in hippocampal slices: role of the K+ ATP channel and protein kinase C. Neuroscience 89:453–459

    Article  CAS  PubMed  Google Scholar 

  15. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci USA 92:4666–4670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yamada K, Inagaki N (2002) ATP-sensitive K(+) channels in the brain: sensors of hypoxic conditions. News Physiol Sci 17:127–130

    CAS  PubMed  Google Scholar 

  17. Stanimirovic DB, Friedman A (2012) Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 32:1207–1221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Spector AA, Norris AW (2007) Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol 292:C996–C1012

    Article  CAS  PubMed  Google Scholar 

  19. Morisseau C, Hammock BD (2005) Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Otsuka T, Sugo N, Ardeshiri A, Alhadid YK, Iliff JJ, DeBarber AE, Koop DR, Alkayed NJ (2008) Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke J Cereb Circul 39:2073–2078

    Article  CAS  Google Scholar 

  21. Imig JD (2006) Cardiovascular therapeutic aspects of soluble epoxide hydrolase inhibitors. Cardiovasc Drug Rev 24:169–188

    Article  CAS  PubMed  Google Scholar 

  22. Bukhari IA, Gauthier KM, Jagadeesh SG, Sangras B, Falck JR, Campbell WB (2011) 14,15-Dihydroxy-eicosa-5(Z)-enoic acid selectively inhibits 14,15-epoxyeicosatrienoic acid-induced relaxations in bovine coronary arteries. J Pharmacol Exp Ther 336:47–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Imig JD, Simpkins AN, Renic M, Harder DR (2011) Cytochrome P450 eicosanoids and cerebral vascular function. Expert Rev Mol Med 13:e7. doi:10.1017/S1462399411001773

  24. Zeldin DC (2001) Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 276:36059–36062

    Article  CAS  PubMed  Google Scholar 

  25. Hwang SH, Tsai HJ, Liu JY, Morisseau C, Hammock BD (2007) Orally bioavailable potent soluble epoxide hydrolase inhibitors. J Med Chem 50:3825–3840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Fang X, Weintraub NL, McCaw RB, Hu S, Harmon SD, Rice JB, Hammock BD, Spector AA (2004) Effect of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels. Am J Physiol Heart Circ Physiol 287:H2412–H2420

    Article  CAS  PubMed  Google Scholar 

  27. Imig JD, Hammock BD (2009) Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discovery 8:794–805

    Article  CAS  Google Scholar 

  28. Zhang W, Koerner IP, Noppens R, Grafe M, Tsai HJ, Morisseau C, Luria A, Hammock BD, Falck JR, Alkayed NJ (2007) Soluble epoxide hydrolase: a novel therapeutic target in stroke. J Cereb Blood Flow Metab 27:1931–1940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Li J, Carroll MA, Chander PN, Falck JR, Sangras B, Stier CT (2008) Soluble epoxide hydrolase inhibitor, AUDA, prevents early salt-sensitive hypertension. Front Biosci 13:3480–3487

    Article  CAS  PubMed  Google Scholar 

  30. Lai XJ, Ye SQ, Zheng L, Li L, Liu QR, Yu SB, Pang Y, Jin S, Li Q, Yu AC, Chen XQ (2014) Selective 14-3-3gamma induction quenches p-beta-catenin Ser37/Bax-enhanced cell death in cerebral cortical neurons during ischemia. Cell Death Dis 5:e1184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, Onteniente B (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21:7127–7134

    CAS  PubMed  Google Scholar 

  32. Obrenovitch TP (1995) The ischaemic penumbra: twenty years on. Cerebrovasc Brain Metab Rev 7:297–323

    CAS  PubMed  Google Scholar 

  33. del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23:879–894

    Article  PubMed  Google Scholar 

  34. Dirnagl U (2012) Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann N Y Acad Sci 1268:21–25

    Article  PubMed  Google Scholar 

  35. Ye D, Zhou W, Lu T, Jagadeesh SG, Falck JR, Lee HC (2006) Mechanism of rat mesenteric arterial KATP channel activation by 14,15-epoxyeicosatrienoic acid. Am J Physiol Heart Circ Physiol 290:H1326–H1336

    Article  CAS  PubMed  Google Scholar 

  36. Davis BB, Thompson DA, Howard LL, Morisseau C, Hammock BD, Weiss RH (2002) Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 99:2222–2227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  CAS  PubMed  Google Scholar 

  38. Kitagawa H, Warita H, Sasaki C, Zhang WR, Sakai K, Shiro Y, Mitsumoto Y, Mori T, Abe K (1999) Immunoreactive Akt, PI3-K and ERK protein kinase expression in ischemic rat brain. Neurosci Lett 274:45–48

    Article  CAS  PubMed  Google Scholar 

  39. Li F, Omori N, Jin G, Wang SJ, Sato K, Nagano I, Shoji M, Abe K (2003) Cooperative expression of survival p-ERK and p-Akt signals in rat brain neurons after transient MCAO. Brain Res 962:21–26

    Article  CAS  PubMed  Google Scholar 

  40. Teramoto N (2006) Physiological roles of ATP-sensitive K+ channels in smooth muscle. J Physiol 572:617–624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Thomzig A, Laube G, Pruss H, Veh RW (2005) Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol 484:313–330

    Article  CAS  PubMed  Google Scholar 

  42. Melamed-Frank M, Terzic A, Carrasco AJ, Nevo E, Avivi A, Levy AP (2001) Reciprocal regulation of expression of pore-forming KATP channel genes by hypoxia. Mol Cell Biochem 225:145–150

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Zhu QL, Wang GZ, Deng TZ, Chen R, Liu MH, Wang SW (2011) The protective roles of mitochondrial ATP-sensitive potassium channels during hypoxia-ischemia-reperfusion in brain. Neurosci Lett 491:63–67

    Article  CAS  PubMed  Google Scholar 

  44. Dong YF, Wang LX, Huang X, Cao WJ, Lu M, Ding JH, Sun XL, Hu G (2013) Kir6.1 knockdown aggravates cerebral ischemia/reperfusion-induced neural injury in mice. CNS Neurosci Ther 19:617–624

    Article  CAS  PubMed  Google Scholar 

  45. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia: the ischemic penumbra. Stroke 12:723–725

    Article  CAS  PubMed  Google Scholar 

  46. Stoller D, Kakkar R, Smelley M, Chalupsky K, Earley JU, Shi NQ, Makielski JC, McNally EM (2007) Mice lacking sulfonylurea receptor 2 (SUR2) ATP-sensitive potassium channels are resistant to acute cardiovascular stress. J Mol Cell Cardiol 43:445–454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Takaba H, Nagao T, Yao H, Kitazono T, Ibayashi S, Fujishima M (1997) An ATP-sensitive potassium channel activator reduces infarct volume in focal cerebral ischemia in rats. Am J Physiol 273:R583–R586

    CAS  PubMed  Google Scholar 

  48. Gross GJ, Gauthier KM, Moore J, Falck JR, Hammock BD, Campbell WB, Nithipatikom K (2008) Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. Am J Physiol Heart Circ Physiol 294:H2838–H2844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Mabuchi T, Lucero J, Feng A, Koziol JA, del Zoppo GJ (2005) Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. J Cereb Blood Flow Metab 25:257–266

    Article  PubMed  Google Scholar 

  50. Palomares SM, Cipolla MJ (2011) Vascular protection following cerebral Ischemia and reperfusion. J Neurol Neurophysiol 2011: S1–004

  51. Perez Velazquez JL, Kokarovtseva L, Sarbaziha R, Jeyapalan Z, Leshchenko Y (2006) Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage. Eur J Neurosci 23:1–10

    Article  PubMed  Google Scholar 

  52. Fang X, Chen P, Moore SA (2002) The oxygen radical scavenger pyrrolidine dithiocarbamate enhances interleukin-1beta-induced cyclooxygenase-2 expression in cerebral microvascular smooth muscle cells. Microvasc Res 64:405–413

    Article  CAS  PubMed  Google Scholar 

  53. Kumar S, Kain V, Sitasawad SL (2012) High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways. Biochim Biophys Acta 1820:907–920

    Article  CAS  PubMed  Google Scholar 

  54. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  CAS  PubMed  Google Scholar 

  55. Takagi K, Ginsberg MD, Globus MY, Dietrich WD, Martinez E, Kraydieh S, Busto R (1993) Changes in amino acid neurotransmitters and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat: correlation with histopathology. J Cereb Blood Flow Metabol 13:575–585

    Article  CAS  Google Scholar 

  56. Memezawa H, Minamisawa H, Smith ML, Siesjo BK (1992) Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res 89:67–78

    Article  CAS  PubMed  Google Scholar 

  57. Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ (1998) Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke 29:1037–1046; discussion 1047

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81171077). We would like to thank Professor Daling Zhu from College of Pharmacy, Harbin Medical University for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Jun Xiao or Yu-Lan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, YY., Yuan, MY., Liu, Y. et al. The Protective Effect of Epoxyeicosatrienoic Acids on Cerebral Ischemia/Reperfusion Injury is Associated with PI3K/Akt Pathway and ATP-Sensitive Potassium Channels. Neurochem Res 40, 1–14 (2015). https://doi.org/10.1007/s11064-014-1456-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1456-2

Keywords

Navigation