Skip to main content

Advertisement

Log in

Mechanical Behavior and Microstructure Evolution during Tensile Deformation of Twinning Induced Plasticity Steel Processed by Warm Forgings

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinning-induced plasticity (TWIP) steel processed using warm forging was investigated. It is found that steel processed via warm forging improves comprehensive mechanical properties compared to the TWIP steel processed via cold rolling, with a high tensile strength (Rm) of 793 MPa, a yield strength (RP) of 682 MPa, an extremely large RP/Rm ratio as high as 0.86 as well as an excellent elongation rate of 46.8%. The microstructure observation demonstrates that steel processed by warm forging consists of large and elongated grains together with fine, equiaxed grains. Complicated micro-defect configurations were also observed within the steel, including dense dislocation networks and a few coarse deformation twins. As the plastic deformation proceeds, the densities of dislocations and deformation twins significantly increase. Moreover, a great number of slip lines could be observed in the elongated grains. These findings reveal that a much more dramatic interaction between microstructural defect and dislocations glide takes place in the forging sample, wherein the fine and equiaxed grains propagated dislocations more rapidly, together with initial defect configurations, are responsible for enhanced strength properties. Meanwhile, larger, elongated grains with more prevalently activated deformation twins result in high plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierce DT, Jiménez JA, Bentley J, et al. The Influence of Manganese Content on the Stacking Fault and Austenite/ε-martensite Interfacial Energies in Fe-Mn-(Al-Si) Steels Investigated by Experiment and Theory[J]. Acta Mater., 2014, 68(2): 238–253. https://doi.org/10.1016/j.actamat.2014.01.001

    Article  CAS  Google Scholar 

  2. Shterner V, Molotnikov A, Timokhina I, et al. Aconstitutive Model of the Deformation Behavior of Twinning Induced Plasticity (TWIP) Steel at Different Temperatures[J]. Mater. Sci. Eng. A, 2014, 613: 224–231. https://doi.org/10.1016/j.msea.2014.06.073

    Article  CAS  Google Scholar 

  3. Kim JK, Kwon MH, Cooman BCD. On the Deformation Twinning Mechanisms in Twinning-Induced Plasticity Steel[J]. Acta Mater., 2017, 141: 444–455. https://doi.org/10.1016/j.actamat.2017.09.043

    Article  CAS  Google Scholar 

  4. Wang D, Wang K, Li Z, et al. Improved Mechanical Properties of a Twinning-Induced Plasticity Steel Prepared by Directional Solidification[J]. Mater. Sci. Eng. A., 2015, 636: 396–406. https://doi.org/10.1016/j.msea.2015.03.118

    Article  CAS  Google Scholar 

  5. Bouaziz O, Allain S, Scott CP, et al. High Manganese Austenitic Twinning Induced Plasticity Steels: a Review of the Microstructure Properties Relationships[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141–168. https://doi.org/10.1016/j.cossms.2011.04.002

    Article  CAS  Google Scholar 

  6. Etemad A, Dini G, Schwarz S. Accumulative Roll Bonding (ARB)-Processed high-manganese twinning induced plasticity (TWIP) steel with extraordinary strength and reasonable ductility[J]. Mater. Sci. Eng. A., 2019, 742: 27–32. https://doi.org/10.1016/j.msea.2018.10.119

    Article  CAS  Google Scholar 

  7. Wang L, Benito JA, Calvo J, et al. Twin-Induced Plasticity of an ECAP-Processed TWIP Steel[J]. J. Mater. Eng. Perform., 2017, 26: 554–562. https://doi.org/10.1007/s11665-016-2400-1

    Article  Google Scholar 

  8. Wang L, Benito JA, Calvo J, et al. Equal Channel Angular Pressing of a TWIP Steel: Microstructure and Mechanical Response[J]. J. Mater Sci., 2017, 52: 6 291–6 309. https://doi.org/10.1007/s10853-017-0862-7

    Article  CAS  Google Scholar 

  9. Wei Y, Li Y, Zhu L, et al. Evading the Strength-Ductility Trade-off Dilemma in Steel through Gradient Hierarchical Nanotwins[J]. Nature Commun., 2014, 3 580. https://doi.org/10.1038/ncomms4580

  10. Vercammen S, Blanpain B, Cooman BCD, et al. Cold Rolling Behaviour of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel: the Importance of Deformation Twinning[J]. Acta Mater., 2004, 52: 2 005–2 012. https://doi.org/10.1016/j.actamat.2003.12.040

    Article  CAS  Google Scholar 

  11. Haase C, Barralesmora LA, Molodov DA, et al. Tailoring the Mechanical Properties of a Twinning-Induced Plasticity Steel by Retention of Deformation Twins During Heat Treatment[J]. Metall. Mater. Trans. A., 2013, 44: 4 445–4 449. https://doi.org/10.1007/s11661-013-1935-0

    Article  CAS  Google Scholar 

  12. Kusakin P, Belyakov A, Haase C, et al. Microstructure Evolution and Strengthening Mechanisms of Fe-23Mn-0.3C-1.5Al TWIP Steel during Cold Rolling[J]. Mater. Sci. Eng. A., 2014, 617: 52–60. https://doi.org/10.1016/j.msea.2014.08.051

    Article  CAS  Google Scholar 

  13. Yang Y, Li CF, Song KH. Effect of Strain Rate on the Microstructures and Properties of Hot-Rolled TWIP Steel in the Solution Condition[J]. Adv. Mater. Res., 2012, 430–432: 256–259. https://doi.org/10.4028/www.scientific.net/AMR.430-432.256

    Article  Google Scholar 

  14. Wei-Fa YI, Zhu DY, Zhen-Ming HU, et al. Effect of Hot Rolling Deformation on Microstructure Defects and Mechanical Properties of High Carbon TWIP Steel[J]. Mater. Sci. Technol., 2011, 19: 45–49. https://doi.org/10.1016/B978-0-444-53599-3.10005-8

    Google Scholar 

  15. Fu X, Wu X, Yu Q. Dislocation Plasticity Reigns in a Traditional Twinning-Induced Plasticity Steel by in Situ Observation[J]. Mater. Today Nano., 2018, 3: 48–53. https://doi.org/10.1016/j.mtnano.2018.11.004

    Article  Google Scholar 

  16. Li Y, Li W, Li S, et al. Ensuring the Strength and Ductility Synergy in an Austenitic Stainless Steel: Single-or Multi-Phase hetero-Structures Design[J]. Scripta Mater., 2021, 193: 81–85. https://doi.org/10.1016/j.scriptamat.2020.10.041

    Article  CAS  Google Scholar 

  17. Wang K, Wang D, Han FS. Effect of Crystalline Grain Structures on the Mechanical Properties of Twinning-Induced Plasticity Steel[J]. Acta Mech. Sinica-prc., 2016, 32: 181–187. https://doi.org/10.1007/s10409-015-0513-7

    Article  CAS  Google Scholar 

  18. Ding H, Ding H, Song D, et al. Strain Hardening Behavior of a TRIP/TWIP Steel with 18.8% Mn[J]. Mater. Sci. Eng. A., 2011, 528: 868873. https://doi.org/10.1016/j.msea.2010.10.040

    Article  Google Scholar 

  19. Mohsenzadeh MS, Mazinani M. On the Yield Point Phenomenon in Low-Carbon Steels with Ferrite-cementite Microstructure[J]. Mater. Sci. Eng. A., 2016, 673: 193–203. https://doi.org/10.1016/j.msea.2016.07.033

    Article  CAS  Google Scholar 

  20. Dini G, Najafizadeh A, Ueji R, et al. Improved Tensile Properties of Partially Recrystallized Submicron Grained TWIP Steel[J]. Mater. Lett., 2010, 64: 15–18. https://doi.org/10.1016/j.matlet.2009.09.057

    Article  CAS  Google Scholar 

  21. Fang TH, Li WL, Tao DR, et al. Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper[J]. Science, 2011, 331: 1 587–1 590. https://doi.org/10.1126/science.1200177

    Article  CAS  Google Scholar 

  22. Mi ZL, Tang D, Jiang HT, et al. Effects of Annealing Temperature on the Microstructure and Properties of the 25Mn-3Si-3Al TWIP Steel[J]. Inter. J. Min. Metall. Mater., 2009, 16: 154–158. https://doi.org/10.1016/S1674-4799(09)60026-1

    Article  CAS  Google Scholar 

  23. Cooman BCD, Estrin Y, Kim SK. Twinning-Induced Plasticity (TWIP) Steels[J]. Acta Mater. 2018, 142: 283–362. https://doi.org/10.1016/j.actamat.2017.06.046

    Article  Google Scholar 

  24. Fu L, Shan M, Zhang D, et al. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel[J]. Metall. Mater. Trans. A. 2017, 48: 2 179–2 192. https://doi.org/10.1007/s11661-017-3994-0

    Article  CAS  Google Scholar 

  25. Rahman K, Vorontsov V, Dye D. The Effect of Grain Size on the Twin Initiation Stress in a TWIP Steel[J]. Acta Mater. 2015, 89: 247–257. https://doi.org/10.1016/j.actamat.2015.02.008

    Article  CAS  Google Scholar 

  26. Yu L, Lu Y, Li W, et al. Hierarchical Microstructure Design of a Bimodal Grained Twinning-Induced Plasticity Steel with Excellent Cryogenic Mechanical Properties[J]. Acta Mater. 2018, 158: 79–94. https://doi.org/10.1016/j.actamat.2018.06.019

    Article  Google Scholar 

  27. Tian YZ, Bai Y, Zhao LJ, et al. A Novel Ultrafine-Grained Fe 22Mn 0.6C TWIP Steel with Superior Strength and Ductility[J]. Mater. Char. 2017, 126: 74–80. https://doi.org/10.1016/j.actamat.2018.06.019

    Article  CAS  Google Scholar 

  28. Gutierrez-Urrutia I, Raabe D. Multistage Strain Hardening through Dislocation Substructure and Twinning in a High Strength and Ductile Weight-Reduced Fe-Mn-Al-C Steel[J]. Acta Mater. 2012, 60: 5 791–5 802. https://doi.org/10.1016/j.actamat.2012.07.018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Wang  (汪聃) or Fusheng Han  (韩福生).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the National Natural Science Foundation of China (Nos.51701206 and 51671187), the Shanxi Natural Science Foundation (No.2019JQ-833), the Anhui Natural Science Foundation (1808085QE166), the Special Scientific Research Project of Shanxi Education Committee (No.19JQ0974), and the Doctoral Research Initiation Project of Yan’an University (NoYDBD2018-21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhao, M., Wang, X. et al. Mechanical Behavior and Microstructure Evolution during Tensile Deformation of Twinning Induced Plasticity Steel Processed by Warm Forgings. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 417–424 (2024). https://doi.org/10.1007/s11595-024-2897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2897-3

Key words

Navigation