Skip to main content

Advertisement

Log in

Diffusion Bonding of Al 6061 and Cu by Hot Isostatic Pressing

  • Metallic material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Diffusion bonding between Al and Cu was successfully performed by hot isostatic pressing (HIP). To improve the strength of diffusion bonding joint, pure nickel foils with different thickness were used as intermediate layer. Microstructure of the interface between Al and Cu was investigated by X-ray diffraction (XRD) technique, secondary electron microscopy (SEM), and nano-indentation tests. When the temperature was 500 °C and held for 3 h with a processing pressure of 50 MPa, Al and Cu could be bonded with its interface formed by several diffusion layers. With the addition of Ni interlayer, the diffusion of aluminum atoms was effectively hindered, and the interface became smoother. The tensile strength of bonded joints increases with increasing the thickness of Ni interlayer, which contributes to a reduction in the thickness of intermetallic compounds (IMCs) and well bonding quality of Al-Cu joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jr E A S, Williams J C. Progress in Structural Materials for Aerospace Systems1[J]. Acta Mater., 2003, 51(19): 5 775–5 799

    Article  Google Scholar 

  2. Liu C H, Li X L, Wang S H, et al. A Tuning Nano-precipitation Approach for Achieving Enhanced Strength and Good Ductility in Al Alloys[J]. Mater. Des., 54: 144–148

  3. Li H, Chen W, Dong L, et al. Interfacial Bonding Mechanism and Annealing Effect on Cu-Al Joint Produced by Solid-Liquid Compound Casting[J]. J. Mater. Process. Technol., 2018, 252: 795–803

    Article  CAS  Google Scholar 

  4. Berski S, Banaszek G, Dyja H. Analysis of Die Shape Infuence on Al-Cu Bimetal Charge Yield during Extrusion Process[J]. Metall. Min. Ind., 2011, 3(7): 45–47

    Google Scholar 

  5. Berski S, Dyja H, Maranda A, et al. Analysis of Quality of Bimetallic Rod after Extrusion Process[J]. J. Mater. Process. Technol., 2006, 177(1–3): 582–586

    Article  CAS  Google Scholar 

  6. Khosravifard A, Ebrahimi R. Investigation of Parameters Affecting Interface Strength in Al/Cu Clad Bimetal Rod Extrusion Process[J]. Mater. Des., 2010, 31(1): 493–499

    Article  CAS  Google Scholar 

  7. Dubourg L, Pelletier H, Vaissiere D, et al. Cornet. Mechanical Characterisation of Laser Surface Alloyed Aluminium–Copper Systems[J]. Wear, 2002, 253(9–10): 1 077–1 085

    Article  CAS  Google Scholar 

  8. Yuan H U, Chen Y Q, Li L, et al. Microstructure and Properties of Al/ Cu Bimetal in Liquid–Solid Compound Casting Process[J]. T. Nonferr. Metal. Soc., 2016, 26(6): 1 555–1 563

    Article  Google Scholar 

  9. Zhang L Y, Yao J J, Zeng X Y, et al. Research Progress of Copper Cladding Aluminum Composites[J]. T. Nonferr. Metal. Soc., 2014, 24(5): 1 275–1 284

    CAS  Google Scholar 

  10. Hug E, Bellido N. Brittleness Study of Intermetallic (Cu, Al) Layers in Copper-Clad Aluminium Thin Wires[J]. Mater. Sci. Eng., A, 2011, 528(22): 7 103–7 106

    Article  CAS  Google Scholar 

  11. Lee W B, Bang K S, Jung S B. Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints during Annealing[J]. J. Alloys Compd., 2005, 390(1): 212–219

    Article  CAS  Google Scholar 

  12. Tavassoli S, Abbasi M, Tahavvori R. Controlling of IMCs Layers Formation Sequence, Bond Strength and Electrical Resistance in Al-Cu Bimetal Compound Casting Process[J]. Mater. Des., 2016, 108: 343–353

    Article  CAS  Google Scholar 

  13. Abbasi M, Taheri A K, Salehi M T. Growth Rate of Intermetallic Compounds in Al/Cu Bimetal Produced by Cold Roll Welding Process[J]. J. Alloys Compd., 2001, 319(1–2): 233–241

    Article  CAS  Google Scholar 

  14. Zare G R, Divandari M, Arabi H. Investigation On Interface of Al/Cu Couples in Compound Casting[J]. Mater. Sci. Technol., 2013, 29(2): 190–196

    Article  CAS  Google Scholar 

  15. Xia C Z, Li Y J, Wang J. Microstructure and Phase Constitution Near Interface of Cu/Al Vacuum Brazing[J]. Vacuum, 2008, 82(8): 799–804

    Article  CAS  Google Scholar 

  16. Niu Z W, Zheng Y, Liu K K, et al. Microstructure and Property of Cu/Al Joint Brazed with Al-Si-Ge Filler Metal[J]. Acta Metall. Sinica, 2017, 53(6): 719–725

    CAS  Google Scholar 

  17. Zhang H, Wei C, He J, et al. Formation and Evolution of Cntermetallic Compounds at Interfaces of Cu/Al Joints by Ultrasonic-Assisted Sol-dering[J]. J. Mater. Process. Technol., 2015, 223: 1–7

    Article  Google Scholar 

  18. Guo Y, Liu G, Jin H, et al. Intermetallic Phase Formation in Diffusion-bonded Cu/Al Laminates[J]. J. Mater. Sci., 2011, 46(8): 2 467–2 473

    Article  CAS  Google Scholar 

  19. Mahendran G, Balasubramanian V, Senthilvelan T. Mechanical and Metallurgical Properties of Diffusion Bonded AA2024 Al and AZ31B Mg[J]. Adv. Mater. Res., 2012, 1(2): 147–160

    Article  Google Scholar 

  20. Meng Z H, Wang X, Guo W, et al. Joining Performance and Microstructure of the 2024/7075 Aluminium Alloys Welded Joints by Vaporizing Foil Actuator Welding[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(2): 368–372

    Article  CAS  Google Scholar 

  21. Feng J, Xue S. Growth Behaviors of Intermetallic Compound Layers in Cu/Al Joints Brazed with Zn–22Al and Zn–22Al–0.05Ce Filler Met-als[J]. Mater. Des., 2013, 51(5): 907–915

    Article  CAS  Google Scholar 

  22. Lee T H, Lee Y J, Park K T, et al. Controlling Al/Cu Composite Diffusion Layer during Hydrostatic Extrusion by Using Colloidal Ag[J]. J. Mater. Process. Technol., 2013, 213(3): 487–494

    Article  CAS  Google Scholar 

  23. Meshram S D, Reddy G M. Friction Welding of AA6061 to AISI 4340 Using Silver Interlayer[J]. Def. Technol., 2015, 11(3): 292–298

    Article  Google Scholar 

  24. Kuk S W, Ryu H J, Yu J. Effects of the Al/Ni Ratio on the Reactions in the Compression-bonded Ni-Sputtered Al Foil Multilayer[J]. J. Alloys Compd., 2014, 589(4): 455–461

    Article  CAS  Google Scholar 

  25. Kuk S W, Ryu H J, Yu J. Self-propagation Combustion Behavior with Varying Al/Ni Ratios in Compression-Bonded Ni-Sputtered Al Foil Multilayers[J]. Metall. Mater. Trans. A, 2014, 45(12): 5 691–5 698

    Article  CAS  Google Scholar 

  26. Kuk S W, Yu J, Ryu H J. Stationary Self-Propagation Combustion with Variations in the Total Layer Thickness of Compression-Bonded Ni-Sputtered Al Foil Multilayers[J]. J. Alloys Compd., 2015, 626: 16–19

    Article  CAS  Google Scholar 

  27. Li H Y, Chen W G, Dong L L, et al. Interfacial Bonding Mechanism and Annealing Effect on Cu-Al Joint Produced by Solid-Liquid Compound Casting[J]. J. Mater. Process. Technol., 2017, 252: 795–803

    Article  Google Scholar 

  28. Kim I K, Sun I H. Effect of Heat Treatment on the Bending Behavior of Tri-layered Cu/Al/Cu Composite Plates[J]. Mater. Des., 2013, 47(9): 590–598

    Article  CAS  Google Scholar 

  29. Sheng L Y, Yang F, Xi T F, et al. Infuence of Heat Treatment on Interface of Cu/Al Bimetal Composite Fabricated by Cold Rolling[J]. Composites Part B, 2011, 42(6): 1 468–1 473

    Article  Google Scholar 

  30. Zhang R, Lin G, Wang L, et al. Effect of Heat Treatment on the Interface of Al/Cu Bimetal Laminated Material[J]. Ordnance Mater. Sci. Eng., 2011, 34(5): 5–8

    Google Scholar 

  31. Zhang Y H, Qin J, Zhao H J, et al. Interfacial Microstructure Evolution of Copper/Aluminium Laminates with Different Annealing Pro-cesses[J]. Adv. Mater. Res., 2011, 239–242: 2 976–2 980

    Article  Google Scholar 

  32. Abdul-Lettif A M. Investigation of Interdiffusion in Copper–Nickel Bilayer Thin Films[J]. Physica B, 2007, 388(1–2): 107–111

    Article  CAS  Google Scholar 

  33. Xiong J, Peng Y, Zhang H, et al. Microstructure and Mechanical Properties of Al-Cu Joints Diffusion-bonded with Ni or Ag Interlayer[J]. Vacuum, 2018, 147: 187–193

    Article  CAS  Google Scholar 

  34. Lee S., Lee M G, Lee S P, et al. Effect of Bonding Interface on De-lamination Behavior of Drawn Cu/Al Bar Clad Material[J]. T. Nonferr. Metal. Soc., 2012, 22: 645–649

    Article  Google Scholar 

  35. Qi J L, Wang Z Y, Lin J H, et al. Graphene-Enhanced Cu Composite Interlayer for Contact Reaction Brazing Aluminum Alloy 6061[J]. Va c -uum, 2017, 136: 142–145

    CAS  Google Scholar 

  36. Zhang H T, Cao J, Lu H. Reactive Brazing of Aluminium to Aluminium-Based Composite Reinforced with Alumina Borate Whiskers with Cu Interlayer[J]. Vacuum, 2009, 84(4): 474–477

    Article  CAS  Google Scholar 

  37. Yousef Mehr V, Toroghinejad M R, Rezaeian A. The Effects of Oxide Film and Annealing Treatment on the Bond Strength of Al–Cu Strips in Cold Roll Bonding Process[J]. Mater. Des., 2014, 53: 174–181

    Article  Google Scholar 

  38. Ling C, Zhong Y, Chen Y, et al. Fabrication of Lateral Compound Cu/ Al Composites by Conclad Continuous Extrusion[J]. Spec.Cast. Non-ferr. Alloys, 2017, 37(1): 89–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Teng  (滕庆).

Additional information

Funded by National Science and Technology Major Project (No. 2017-V I-0009-0080), Science and Technology Planning Project of Wuhan (No. 2018010401011281)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Q., Li, X. & Wei, Q. Diffusion Bonding of Al 6061 and Cu by Hot Isostatic Pressing. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 183–191 (2020). https://doi.org/10.1007/s11595-020-2242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2242-4

Key words

Navigation