Skip to main content
Log in

Development of a Non-Enzyme Sensor to Detect Glucose Based on the Modification of Copper Electrode

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the Cu/Cu2O and Cu/Cu2O/CuO electrodes were successfully fabricated from the copper layer of a printed circuit board using an electrical oxidation method. The physical properties of these samples were verified through X-Ray diffraction and scanning electron microscopy (SEM) measurements. The Cu/Cu2O and Cu/CuO/Cu2O electrodes were employed as non-enzyme sensors for the detection of glucose in the alkaline solution. The properties of electrodes were investigated using cyclic voltammetry and amperometry measurements with glucose solution. The results show that both types of electrodes can detect and quantify glucose concentrations. The Cu/Cu2O/CuO composite electrode demonstrated superior performance compared to the Cu/Cu2O electrode. The proposed sensor demonstrated a limit of detection of approximately 63.08 nM. Additionally, the proposed sensor was also investigated with various interfering substances, including ascorbic acid, urea, and table salt. The results revealed that the current intensity remained nearly unchanged for these substances, while it significantly increased from 0.3 to 2.5 mA/cm2 for glucose. With these achieved results, the developed system shows promise for application in glucose testing systems, benefiting diabetic patients in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, H.C.; Lee, A.R.: Recent developments in blood glucose sensors. J. Food Drug Anal. 23(2), 191–200 (2015). https://doi.org/10.1016/J.JFDA.2014.12.001

    Article  Google Scholar 

  2. Wu, P.; Shao, Q.; Hu, Y.; Jin, J.; Yin, Y.; Zhang, H.; Cai, C.: Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta 55(28), 8606–8614 (2010). https://doi.org/10.1016/J.ELECTACTA.2010.07.079

    Article  Google Scholar 

  3. Yoshida, H.; Sakai, G.; Mori, K.; Kojima, K.; Kamitori, S.; Sode, K.: Structural analysis of fungus-derived FAD glucose dehydrogenase. Nat. Publ. Gr. (2015). https://doi.org/10.1038/srep13498

    Article  Google Scholar 

  4. Yoo, S.; Min, K.; Tae, G.; Han, M.S.: A long-term stable paper-based glucose sensor using a glucose oxidase-loaded, Mn2BPMP-conjugated nanocarrier with a smartphone readout. Nanoscale 13(8), 4467–4474 (2021). https://doi.org/10.1039/D0NR06348G

    Article  Google Scholar 

  5. Jeon, W.Y.; Kim, H.H.; Choi, Y.B.: Development of a glucose sensor based on glucose dehydrogenase using polydopamine-functionalized nanotubes. Membranes (Basel). 11(6), 384 (2021). https://doi.org/10.3390/MEMBRANES11060384/S1

    Article  Google Scholar 

  6. Jeon, W.Y.; Kim, H.S.; Jang, H.W.; Lee, Y.S.; Shin, U.S.; Kim, H.H.; Choi, Y.B.A.: Stable glucose sensor with direct electron transfer, based on glucose dehydrogenase and chitosan hydro bonded multi-walled carbon nanortubes. Biochem. Eng. J. 187, 108589 (2022). https://doi.org/10.1016/J.BEJ.2022.108589

    Article  Google Scholar 

  7. Hwang, D.W.; Lee, S.; Seo, M.; Chung, T.D.: Recent advances in electrochemical non-enzymatic glucose sensors – A review. Anal. Chim. Acta 1033, 1–34 (2018). https://doi.org/10.1016/J.ACA.2018.05.051

    Article  Google Scholar 

  8. Wei, M.; Qiao, Y.; Zhao, H.; Liang, J.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Lu, W.; Sun, X.: Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem. Commun. 56(93), 14553–14569 (2020). https://doi.org/10.1039/D0CC05650B

    Article  Google Scholar 

  9. Lakshmy, S.; Santhosh, S.; Kalarikkal, N.; Rout, C.S.; Chakraborthy, B.: A review of electrochemical glucose sensing based on transition metal phosphides. J. Appl. Phys. 133(7), 70702 (2023). https://doi.org/10.1063/5.0111591/2876617

    Article  Google Scholar 

  10. Niu, X.; Li, X.; Pan, J.; He, Y.; Qiu, F.; Yan, Y.: Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. RSC Adv. 6(88), 84893–84905 (2016). https://doi.org/10.1039/C6RA12506A

    Article  Google Scholar 

  11. Zhu, H.; Li, L.; Zhou, W.; Shao, Z.; Chen, X.: Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B 4(46), 7333–7349 (2016). https://doi.org/10.1039/C6TB02037B

    Article  Google Scholar 

  12. Dong, Q.; Ryu, H.; Lei, Y.: Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim. Acta 370, 137744 (2021). https://doi.org/10.1016/J.ELECTACTA.2021.137744

    Article  Google Scholar 

  13. Harper, A.; Anderson, M.R.: Electrochemical glucose sensors—developments using electrostatic assembly and carbon nanotubes for biosensor construction. Sensors 10(9), 8248–8274 (2010). https://doi.org/10.3390/S100908248

    Article  Google Scholar 

  14. Wei, H.; Xu, Q.; Li, A.; Wan, T.; Huang, Y.; Cui, D.; Pan, D.; Dong, B.; Wei, R.; Naik, N.; Guo, Z.: Dendritic core-shell copper-nickel alloy@metal oxide for efficient non-enzymatic glucose detection. Sensors Actuators B Chem. 337, 129687 (2021). https://doi.org/10.1016/J.SNB.2021.129687

    Article  Google Scholar 

  15. Khayyat, S.A.; Ansari, S.G.; Umar, A.: Glucose Sensor Based on Copper Oxide Nanostructures. J. Nanosci. Nanotechnol. 14(5), 3569–3574 (2014). https://doi.org/10.1166/JNN.2014.7918

    Article  Google Scholar 

  16. Cheng, C.E.; Tangsuwanjinda, S.; Cheng, H.M.; Lee, P.H.: Copper oxide decorated zinc oxide nanostructures for the production of a non-enzymatic glucose sensor. Coatings 11(8), 936 (2021). https://doi.org/10.3390/COATINGS11080936

    Article  Google Scholar 

  17. Waqas, M.; Wu, L.; Tang, H.; Liu, C.; Fan, Y.; Jiang, Z.; Wang, X.; Zhong, J.; Chen, W.: Cu2O microspheres supported on sulfur-doped carbon nanotubes for glucose sensing. ACS Appl. Nano Mater. 3(5), 4788–4798 (2020). https://doi.org/10.1021/ACSANM.0C00847/SUPPL_FILE/AN0C00847_SI_001.PDF

    Article  Google Scholar 

  18. Mamleyev, E.R.; Weidler, P.G.; Nefedov, A.; Szabó, D.V.; Islam, M.; Mager, D.; Korvink, J.G.: Nano- and microstructured copper/copper oxide composites on laser-induced carbon for enzyme-free glucose sensors. ACS Appl. Nano Mater. 4(12), 13747–13760 (2021). https://doi.org/10.1021/ACSANM.1C03149/ASSET/IMAGES/LARGE/AN1C03149_0007.JPEG

    Article  Google Scholar 

  19. Zhong, Y.; Shi, T.; Liu, Z.; Cheng, S.; Huang, Y.; Tao, X.; Liao, G.; Tang, Z.: Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sensors Actuators B Chem. 236, 326–333 (2016). https://doi.org/10.1016/J.SNB.2016.06.020

    Article  Google Scholar 

  20. Xu, L.; Yang, Q.; Liu, X.; Liu, J.; Sun, X.: One-dimensional copper oxide nanotube arrays: biosensors for glucose detection. RSC Adv. 4(3), 1449–1455 (2013). https://doi.org/10.1039/C3RA45598J

    Article  Google Scholar 

  21. Inyang, A.; Kibambo, G.; Palmer, M.; Cummings, F.; Masikini, M.; Sunday, C.; Chowdhury, M.: One step copper oxide (CuO) thin film deposition for non-enzymatic electrochemical glucose detection. Thin Solid Films 709, 138244 (2020). https://doi.org/10.1016/J.TSF.2020.138244

    Article  Google Scholar 

  22. Sridara, T.; Upan, J.; Saianand, G.; Tuantranont, A.; Karuwan, C.; Jakmunee, J.: Non-enzymatic amperometric glucose sensor based on carbon nanodots and copper oxide nanocomposites electrode. Sensors 20(3), 808 (2020). https://doi.org/10.3390/S20030808

    Article  Google Scholar 

  23. Gao, Z.; Liu, J.; Chang, J.; Wu, D.; He, J.; Wang, K.; Xu, F.; Jiang, K.: Mesocrystalline Cu2O hollow nanocubes: synthesis and application in non-enzymatic amperometric detection of hydrogen peroxide and glucose. CrystEngComm 14(20), 6639–6646 (2012). https://doi.org/10.1039/C2CE25498K

    Article  Google Scholar 

  24. Wang, X.; Hu, C.; Liu, H.; Du, G.; He, X.; Xi, Y.: Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensors Actuators B Chem. 144(1), 220–225 (2010). https://doi.org/10.1016/J.SNB.2009.09.067

    Article  Google Scholar 

  25. Zhang, C.; Chen, J.; Chen, W.; Liu, J.; Chen, D.: Hydrothermal synthesis of Cu2O/CuO/hierarchical porous N-doped activated carbon with exceptional electrochemical performance. J. Energy Storage 60, 106600 (2023). https://doi.org/10.1016/J.EST.2022.106600

    Article  Google Scholar 

  26. Kim, A.Y.; Kim, M.K.; Cho, K.; Woo, J.Y.; Lee, Y.; Han, S.H.; Byun, D.; Choi, W.; Lee, J.K.: One-step catalytic synthesis of CuO/Cu2O in a graphitized porous C matrix derived from the cu-based metal-organic framework for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 8(30), 19514–19523 (2016). https://doi.org/10.1021/ACSAMI.6B05973/SUPPL_FILE/AM6B05973_SI_001.PDF

    Article  Google Scholar 

  27. Wang, L.H.; Gao, S.; Ren, L.L.; Zhou, E.L.; Qin, Y.F.: The synergetic effect induced high electrochemical performance of CuO/Cu2O/Cu nanocomposites as lithium-ion battery anodes. Front. Chem. 9, 1035 (2021). https://doi.org/10.3389/FCHEM.2021.790659/BIBTEX

    Article  Google Scholar 

  28. Siddiqui, H.; Parra, M.R.; Haque, F.Z.: Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol−gel technique. J. Sol-Gel Sci. Technol. 87(1), 125–135 (2018). https://doi.org/10.1007/S10971-018-4663-5/FIGURES/7

    Article  Google Scholar 

  29. Ujjain, S.K.; Roy, P.K.; Kumar, S.; Singha, S.; Khare, K.: Uniting superhydrophobic, superoleophobic and lubricant infused slippery behavior on copper oxide nano-structured substrates. Sci. Reports 6(1), 1–10 (2016). https://doi.org/10.1038/srep35524

    Article  Google Scholar 

  30. Lu, C.; Li, Z.; Ren, L.; Su, N.; Lu, D.; Liu, Z.: In situ oxidation of Cu2O crystal for electrochemical detection of glucose. Sensors 19(13), 2926 (2019). https://doi.org/10.3390/S19132926

    Article  Google Scholar 

  31. Ye, J.S.; Liu, Z.T.; Lai, C.C.; Lo, C.T.; Lee, C.L.: Diameter effect of electrospun carbon fiber support for the catalysis of Pt nanoparticles in glucose oxidation. Chem. Eng. J. 283, 304–312 (2016). https://doi.org/10.1016/J.CEJ.2015.07.071

    Article  Google Scholar 

  32. Shi, L.; Zhu, X.; Liu, T.; Zhao, H.; Lan, M.: Encapsulating Cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing. Sensors Actuators B Chem. 227, 583–590 (2016). https://doi.org/10.1016/J.SNB.2015.12.092

    Article  Google Scholar 

  33. Huo, K.; Fu, J.; Zhang, X.; Xu, P.; Gao, B.; Mooni, S.; Li, Y.; Fu, J.: Phase separation induced rhizobia-like Ni nanoparticles and TiO2 nanowires composite arrays for enzyme-free glucose sensor. Sensors Actuators B Chem. 244, 38–46 (2017). https://doi.org/10.1016/J.SNB.2016.12.088

    Article  Google Scholar 

  34. Mu, Y.; Jia, D.; He, Y.; Miao, Y.; Wu, H.L.: Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron. 26(6), 2948–2952 (2011). https://doi.org/10.1016/J.BIOS.2010.11.042

    Article  Google Scholar 

  35. Huo, H.; Guo, C.; Li, G.; Han, X.; Xu, C.: Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor. RSC Adv. 4(39), 20459–20465 (2014). https://doi.org/10.1039/C4RA02390K

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Vietnam Ministry of Science and Technology under Grant NĐT.101.TW/21. Chi Tran Nhu was funded by the Master, PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), code VINIF.2023.TS.016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phu Nguyen Dang.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran Nhu, C., Bui Thanh, T., Chu Duc, T. et al. Development of a Non-Enzyme Sensor to Detect Glucose Based on the Modification of Copper Electrode. Arab J Sci Eng (2023). https://doi.org/10.1007/s13369-023-08594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08594-y

Keywords

Navigation