Skip to main content
Log in

Functional (Ba0.5Sr0.5)(Co0.8Fe0.2-xCrx)O3-δ (x = 0.00, 0.05, 0.10) oxides for membrane-based air separation at high temperatures: structural evolution, oxygen permeability, and transporting mechanism

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The partially Cr-substituted perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2-xCrx)O3-δ (x = 0.00, 0.05, 0.10) oxides were synthesized by the solid-state reaction method and characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Oxygen permeability across dense (Ba0.5Sr0.5)(Co0.8Fe0.2-xCrx)O3-δ (x = 0.00, 0.05, 0.10) membranes as oxygen separators for the high-temperature air separation were studied at 700–850 °C, and it is increased as x = 0.00 > 0.05 > 0.10 for (Ba0.5Sr0.5)(Co0.8Fe0.2-xCrx)O3-δ. The lowered oxygen permeability of the Cr-doped membranes is attributed to the higher oxidation state of the doped Cr cations with respect to Fe/Co ones, leading to the decrease in the oxygen vacancy concentration in the (Ba0.5Sr0.5)(Co0.8Fe0.2-xCrx)O3-δ (x = 0.00) oxide. The enhanced oxygen permeation stability for the partially Cr-doped (Ba0.5Sr0.5)(Co0.8Fe0.2-xCrx)O3-δ (x = 0.05, 0.10) separation membranes was observed by the long-term permeation tests. The oxygen ionic transporting mechanism for oxygen permeation across the as-prepared dense (Ba0.5Sr0.5)(Co0.8Fe0.2-xCrx)O3-δ (x = 0.10) membranes was also studied at 700–850 °C. The results demonstrate that the oxygen diffusive transporting in the sintered ceramics is the rate-limiting step for the dense (Ba0.5Sr0.5)(Co0.8Fe0.2-xCrx)O3-δ (x = 0.10) membranes in the temperature range of 700–850 °C investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bouwmeester HJM, Burggraaf AJ (1996) In: Burggraaf AJ, Cot L (eds) Fundamentals of inorganic membrane science and technology. Elsevier, Amsterdam, p 435

    Chapter  Google Scholar 

  2. Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S, Alamdari H (2014) Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem Rev 114(20):10292–10368. https://doi.org/10.1021/cr500032a

    Article  CAS  PubMed  Google Scholar 

  3. Bouwmeester HJM (2003) Dense ceramic membranes for methane conversion. Catal Today 82:141–150. https://doi.org/10.1016/S0920-5861(03)00222-0

    Article  CAS  Google Scholar 

  4. Jaiswal SK, Kashyap VK, Kumar J (2020) Correlation of structure, electrical conductivity, and oxygen permeability in strontium cobaltite ceramic membranes. J Asian Ceram Soc 8:1018–1026. https://doi.org/10.1080/21870764.2020.1840699

    Article  Google Scholar 

  5. Arnold M, Wang HH, Feldhoff A (2007) Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. J Membr Sci 293:44–52. https://doi.org/10.1016/j.memsci.2007.01.032

    Article  CAS  Google Scholar 

  6. Zhang K, Ran R, Ge L, Shao ZP, Jin WQ, Xu NP (2008) Systematic investigation on new SrCo1−yNbyO3−δ ceramic membranes with high oxygen semi-permeability. J Membr Sci 323:436–443. https://doi.org/10.1016/j.memsci.2008.07.002

    Article  CAS  Google Scholar 

  7. Lu H, Cong Y, Yang WS (2006) Oxygen permeability and stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as an oxygen-permeable membrane at high pressures. Solid State Ionics 177:595–600. https://doi.org/10.1016/j.ssi.2005.10.030

    Article  CAS  Google Scholar 

  8. Wang HH, Cong Y, Yang WS (2002) High selectivity of oxidative dehydrogenation of ethane to ethylene in an oxygen permeable membrane reactor. Chem Commun 14:1468–1469. https://doi.org/10.1039/B203168J

    Article  Google Scholar 

  9. Qiu L, Lee TH, Liu LM, Yang YL, Jacobson AJ (1995) Oxygen permeation studies of SrCo0.8Fe0.2O3−δ. Solid State Ionics 76:321–329. https://doi.org/10.1016/0167-2738(94)00296-5

    Article  CAS  Google Scholar 

  10. Kim S, Yang YL, Jacobson AJ, Abeles B (1998) Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation. Solid State Ionics 106:189–195. https://doi.org/10.1016/S0167-2738(97)00492-X

    Article  CAS  Google Scholar 

  11. Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172:177–188. https://doi.org/10.1016/S0376-7388(00)00337-9

    Article  CAS  Google Scholar 

  12. Lu H, Tong JH, Cong Y, Yang WS (2005) Partial oxidation of methane in Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane reactor at high pressures. Catal Today 104:154–159. https://doi.org/10.1016/j.cattod.2005.03.078

    Article  CAS  Google Scholar 

  13. Yang WS, Wang HH, Zhu XF, Lin LW (2005) Development and application of oxygen permeable membrane in selective oxidation of light alkanes. Top Catal 35:155–167. https://doi.org/10.1007/s11244-005-3820-6

    Article  CAS  Google Scholar 

  14. Lu H, Kim JP, Son SH, Park JH (2009) Perovskite Co-free La0.6Sr0.4M0.2Fe0.8O3−δ (M = Cr or Ti) mixed-conductors: preparation and characterization. Mater Sci Eng B 163:151–156. https://doi.org/10.1016/j.mseb.2009.05.022

    Article  CAS  Google Scholar 

  15. Kharton VV, Naumovich EN, Kovalevsky AV, Viskup AP, Figueiredo FM, Bashmakov IA, Marques FMB (2000) Mixed electronic and ionic conductivity of LaCo(M)O3−δ (M = Ga, Cr, Fe or Ni): IV. Effect of preparation method on oxygen transport in LaCoO3−δ. Solid State Ionics 138:135–148. https://doi.org/10.1016/S0167-2738(00)00780-3

    Article  CAS  Google Scholar 

  16. Tikhonovich VN, Zharkovskaya OM, Naumovich EN, Bashmakov IA, Kharton VV, Vecher AA (2003) Oxygen nonstoichiometry of Sr(Co, Fe)O3δ-based perovskites: I. Coulometric titration of SrCo0.85Fe0.10Cr0.05O3δ by the two-electrode technique. Solid State Ionics 160:259–270. https://doi.org/10.1016/S0167-2738(03)00187-5

    Article  CAS  Google Scholar 

  17. Sabarou H, Wang R, Zhong Y (2020) The origin of the phase separation in (La0.8Sr0.2)0.95(CrxFe1-x)O3-δ perovskites for oxygen transport membranes applications. Solid State Ionics 349:115293. https://doi.org/10.1016/j.ssi.2020.115293

    Article  CAS  Google Scholar 

  18. Yang L, Gu XH, Tian L, Zhang LX, Wang CQ, Xu NP (2003) Role of ZrO2 addition on oxygen transport and stability of ZrO2-promoted SrCo0.4Fe0.6O3−δ. Separ Purif Tech 32:301–306. https://doi.org/10.1016/S1383-5866(03)00046-7

    Article  CAS  Google Scholar 

  19. Lu H, Deng ZQ, Tong JH, Yang WS (2005) Oxygen permeability and structural stability of Zr-doped oxygen-permeable Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane. Mater Lett 59:2285–2288. https://doi.org/10.1016/j.matlet.2005.03.004

    Article  CAS  Google Scholar 

  20. Chen XZ, Liu HF, Wei YY, Caro J, Wang HH (2009) A novel zincum-doped perovskite-type ceramic membrane for oxygen separation. J Alloy Compound 484:386–389. https://doi.org/10.1016/j.jallcom.2009.04.107

    Article  CAS  Google Scholar 

  21. Weber V, Meffert M, Wagner S, Störmer H, Unger LS, Ivers-Tiffée E, Gerthesen D (2020) Influence of B-site doping with Ti and Nb on microstructure and phase constitution of (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ. J Mater Sci 55:947–966. https://doi.org/10.1007/s10853-019-04102-6

    Article  CAS  Google Scholar 

  22. Lin HQ, Lu H, Cao SY, Gui JZ, Liu D, Park JH (2017) Perovskite-type (Ba0.15Sr0.85)(B0.15Co0.85)O3-δ (B = Ti, Nb) oxides: structural stability, oxygen nonstoichiometry, and oxygen sorption/desorption properties. Ionics 23:717–724. https://doi.org/10.1007/s11581-016-1835-6

    Article  CAS  Google Scholar 

  23. Lu H, Kim JP, Son SH, Park JH (2010) Structure, chemical stability and electrical conductivity of perovskite La0.6Sr0.4M0.3Fe0.7O3−δ (M = Co, Ti) oxides. Mater Sci Eng B 166:135–140. https://doi.org/10.1016/j.mseb.2009.10.022

    Article  CAS  Google Scholar 

  24. Kato S, Kikawa D, Ogasawara M, Moriya Y, Sugai M, Nakata S (2005) Synthesis and oxygen permeability of the perovskite-type oxides in the La–Sr–Fe–Mn–O system. Solid State Ionics 176:1377–1381. https://doi.org/10.1016/j.ssi.2005.03.006

    Article  CAS  Google Scholar 

  25. Lu H, Zhang JN, Zhang QP, Gui JZ (2020) Novel Ba0.15Sr0.85M0.15Fe0.85O3-δ (M = Fe, Co, Al, Ti) perovskite oxides for oxygen enrichment: structural, electrical, and oxygen sorption/desorption properties. Mater Sci Eng B 262:114686. https://doi.org/10.1016/j.mseb.2020.114686

    Article  CAS  Google Scholar 

  26. Dassonneville MR, Rosini S, van Veen AC, Farrusseng D, Mirodatos C (2005) Oxidative activation of ethane on catalytic modified dense ionic oxygen conducting membranes. Catal Today 104:131–137. https://doi.org/10.1016/j.cattod.2005.03.071

    Article  CAS  Google Scholar 

  27. Svarcova S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T (2008) Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178:1787–1791. https://doi.org/10.1016/j.ssi.2007.11.031

    Article  CAS  Google Scholar 

  28. Thursfield A, Metcalfe IS (2004) The use of dense mixed ionic and electronic conducting membranes for chemical production. J Mater Chem 14:2475–2485. https://doi.org/10.1039/B405676K

    Article  CAS  Google Scholar 

  29. Athayde DD, Souza DF, Silva AMA, Vasconcelos D, Nunes EHM, Diniz da Costa JC, Vasconcelos WL (2016) Review of perovskite ceramic synthesis and membrane preparation methods. Ceram Int 42:6555–6571. https://doi.org/10.1016/j.ceramint.2016.01.130

    Article  CAS  Google Scholar 

  30. Wang ZG, Bian ZF, Dewangan N, Xu J, Kawi S (2019) High-performance catalytic perovskite hollow fiber membrane reactor for oxidative propane dehydrogenation. J Membr Sci 578:36–42. https://doi.org/10.1016/j.memsci.2019.02.012

    Article  CAS  Google Scholar 

  31. Deronzier E, Chartier T, Geffroy PM (2020) Oxygen semi-permeation properties of La1−xSrxFeO3−δ perovskite membranes under high oxygen gradient. J Mater Res 35:2506–2515. https://doi.org/10.1557/jmr.2020.230

    Article  CAS  Google Scholar 

  32. Hao PX, Shi YX, Li SG, Liang SG (2018) Oxygen sorption/desorption kinetics of SrCo0.8Fe0.2O3−δ perovskite adsorbent for high temperature air separation. Adsorption 24:65–71. https://doi.org/10.1007/s10450-017-9922-1

    Article  CAS  Google Scholar 

  33. Tang X, Zhang XX, Luo W, Wu CZ, Zhang YW, Ding WZ, Sun CH (2016) Iron-doping effects on the CO2 tolerance of a perovskite oxygen-permeable membrane. J Mater Sci 51:3971–3978. https://doi.org/10.1007/s10853-015-9715-4

    Article  CAS  Google Scholar 

  34. Zhang C, Sunarso J, Liu SM (2017) Designing CO2-resistant oxygen-selective mixed ionic–electronic conducting membranes: guidelines, recent advances, and forward directions. Chem Soc Rev 46:2941–3005. https://doi.org/10.1039/C6CS00841K

    Article  CAS  PubMed  Google Scholar 

  35. Kim YM, Chen XB, Jiang SP, Bae J (2011) Chromium deposition and poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode of solid oxide fuel cells. Electrochem Solid-State Lett 14:B41. https://doi.org/10.1149/1.3549169

    Article  CAS  Google Scholar 

  36. Zhao L, He BB, Zhang XZ, Peng RR, Meng GY, Liu XQ (2010) Electrochemical performance of novel cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3−δ for solid oxide fuel cell cathode. J Power Sources 195:1859–1861. https://doi.org/10.1016/j.jpowsour.2009.09.078

    Article  CAS  Google Scholar 

  37. Lu H, Zhang QP, Liu RZ, Gui JZ (2021) Oxidative coupling of methane over SrO/La2O3 catalyst in an oxygen-permeable separation membrane reactor. Catal Lett 151:1805–1809. https://doi.org/10.1007/s10562-020-03440-4

    Article  CAS  Google Scholar 

  38. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A A32:751–767

    Article  CAS  Google Scholar 

  39. Sihar AS, Othman N, Alias AH, Shahruddin MZ, Syed-Hassan SSA, Rahman MA, Ismail AF, Wu ZT (2019) Fabrication of lanthanum-based perovskites membranes on porous alumina hollow fibre (AHF) substrates for oxygen enrichment. Ceram Int 45:13086–13093. https://doi.org/10.1016/j.ceramint.2019.03.242

    Article  CAS  Google Scholar 

  40. Plazaola AA, Labella AC, Liu YL, Porras NB, Tanaka DAP, Annaland MVS, Gallucci F (2019) Mixed ionic-electronic conducting membranes (MIEC) for their application in membrane reactors: a review. Processes 7(3):128. https://doi.org/10.3390/pr7030128

    Article  CAS  Google Scholar 

  41. Jaiswal SK, Kumar J (2017) Oxygen permeation characteristics of sol-gel derived barium-substituted strontium ferrite membranes. J Am Ceram Soc 100:1306–1312. https://doi.org/10.1111/jace.14632

    Article  CAS  Google Scholar 

  42. Chen YB, Qian BM, Li SD, Jiao Y, Tade MO, Shao ZP (2014) The influence of impurity ions on the permeation and oxygen reduction properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite. J Membr Sci 449:86–96. https://doi.org/10.1016/j.memsci.2013.08.021

    Article  CAS  Google Scholar 

  43. Jaiswal SK, Kumar J (2021) On the X-ray photoelectron spectra, oxygen permeability, and electrical conductivity variations in (Ba0.5Sr0.5)(ZnηFe1-η)O3-ξ (η=0, 0.2) system. Ionics 27:1323–1329. https://doi.org/10.1007/s11581-020-03848-3

    Article  CAS  Google Scholar 

  44. Jaiswal SK, Ranjan J, Kumar J (2020) Structural, Mössbauer studies and oxygen permeation characteristics of Sr1-xBaxFe1-yLiyO3-ξ (x = 0, 0.5; y= 0-0.10) system. J Alloy Compd 844:155832. https://doi.org/10.1016/j.jallcom.2020.155832

    Article  CAS  Google Scholar 

  45. Gong ZL, Yin X, Hong L (2009) Modification of B-site doping of perovskite LaxSr1−xFe1−y−zCoyCrzO3−δ oxide by Mg2+ ion. Solid State Ionics 180:1471–1477. https://doi.org/10.1016/j.ssi.2009.09.009

    Article  CAS  Google Scholar 

  46. Richardson RA, Ormerod RM, Cotton JW (2003) Preparation and performance of a perovskite-type tubular membrane for the partial oxidation of methane. Ionics 9:411–416. https://doi.org/10.1007/BF02376594

    Article  CAS  Google Scholar 

  47. Magnone E, Seo MJ, Kim HJ, Park JH (2014) Thermal characterization and compatibility studies of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxide with Cr2O3 at high temperature. J Therm Anal Calorim 116:215–218. https://doi.org/10.1007/s10973-013-3496-2

    Article  CAS  Google Scholar 

  48. Sowjanya C, Pratihar SK (2021) Electrical transport behavior of La0.5Sr0.5Co0.2-xAlxFe0.8O3-δ (x = 0–0.2) perovskite oxides. Ionics 27:4333–4346. https://doi.org/10.1007/s11581-021-04168-w

    Article  CAS  Google Scholar 

Download references

Funding

H. L. gratefully acknowledges the financial supports from the National Natural Science Funds of China (No. 21676264), the State Key Laboratory of Separation Membranes and Membrane Processes/Tiangong University (No. M202104), and the key scientific research projects of Henan Provincial Colleges (No 22B150020) and Xinyang University (Nos. 2020-XJLZD-001, 2020-DXSLYB-008), P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Zhang, H., Wang, H. et al. Functional (Ba0.5Sr0.5)(Co0.8Fe0.2-xCrx)O3-δ (x = 0.00, 0.05, 0.10) oxides for membrane-based air separation at high temperatures: structural evolution, oxygen permeability, and transporting mechanism. Ionics 28, 823–830 (2022). https://doi.org/10.1007/s11581-021-04382-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04382-6

Keywords

Navigation